

HAMPTON ROADS BRIDGE TUNNEL EXPANSION PRELIMINARY SEDIMENT STUDY

July 23, 2018

Prepared for:

Virginia Department of Transportation Mr. James Martin 1401 East Broad Street Richmond, Virginia 23219 Prepared by:

Cardno 10988 Richardson Road Ashland, Virginia 23005 www.cardno.com

July 23, 2018

Mr. James Martin Virginia Department of Transportation 1401 East Broad Street Richmond, Virginia 23219

Subject: Hampton Roads Bridge Tunnel Expansion Preliminary Sediment Study

Dear Mr. Martin:

Please find enclosed the Hampton Roads Bridge Tunnel (*HRBT*) Expansion Preliminary Sediment Study Report. The report describes the sampling methodologies and laboratory data for potential offerors to evaluate sediment/dredge spoil management/disposal in preparing their proposal.

Please include this report with the project solicitation documents so that potential offerors can review this preliminary study and evaluate for their proposal response such as determining additional data needs. If you have any questions or require additional information, please feel free to contact us.

Sincerely,

Tico Powers

Eric R. Powers, P.G. Principal/Senior Geologist for Cardno Direct Line +1 804 412-6551 Email: eric.powers@cardno.com

Enclosures: Preliminary Sediment Study Report

AL

Vince Alaimo Vice President for Cardno Direct Line +1 804 412-6538 Email: Vince.Alaimo@cardno.com

Cardno 10988 Richardson Road Ashland, VA 23005

Phone +1 804 798 6525 Fax +1 804 798 5907

www.cardno.com

Table of Contents

1	Introd	uction		1
	1.1	Project	Description	1
	1.2	Scope	of Investigation	1
	1.3	Samplii	ng Plan	2
		1.3.1	Upland Disposal	2
		1.3.2	Landfill Disposal	2
		1.3.3	Ocean Disposal	3
	1.4	Project	Setting	3
2	Field a	and Labo	pratory Methods	
	2.1	Site Ac	cess and Coordination	3
	2.2	Sample	e Locations	4
	2.3	Boring	and Sample Identification	4
	2.4	Sedime	ent Sampling	4
	2.5	Sample	e Collection, Labelling, Transport and Storage	5
		2.5.1	Water Sample Collection	5
		2.5.2	Sediment Sampling	6
	2.6	Quality	Assurance/Quality Control	6
		2.6.1	Documentation and Chain of Custody	6
		2.6.2	Holding Times	6
		2.6.3	Field Equipment Decontamination	6
	2.7	Laborat	tory Analytical Methods	7
3	Data o	comparis	ons	9
	3.1	Upland	Disposal	9
	3.2	Landfill	Disposal	9
	3.3	Ocean	Disposal	9
4	Resul	ts		9
	4.1	Upland	Disposal Results	
		4.1.1	Weanack Comparison	
		4.1.2	Other Potential Upland Disposal Sites	
	4.2	Landfill	Disposal Results	
	4.3	Ocean	Disposal Results	
		4.3.1	Metals	
		4.3.2	Chemicals/Organics	
5	Concl	usions		31

Tables

Borehole Locations and Analyses of Dredge Sediment Samples	1
Analytical methods used in evaluating sediment, water and elutriates	
Sediment Results	
Elutriate Results	
Water Results	

Appendices

Α	Vicinity Map
	Site Map
	Analytical Certificates
	Agricultural Test Results

Appendix D Available upon request.

1 Introduction

1.1 Project Description

The Virginia Department of Transportation (*VDOT*) plans to expand the I-64 Hampton Roads Bridge Tunnel (*HRBT*) system connecting the cities of Hampton and Norfolk, Virginia. The existing and general proposed HRBT bridge/tunnel alignments are depicted on the *Vicinity Map, Appendix A* and *Site Map, Appendix B*. The proposed expansion alignment parallels (to the south) the existing pair of submerged tubes and trestles for a distance of approximately 26,200 feet. Of this distance, approximately 7,286 feet consists of two existing submerged tubes installed beneath the Thimble Shoals Channel. The expansion project will include the construction of a new tube (the third tube), new trestles, and expanding the north and south tunnel islands. The forthcoming design-build project allows for offerors to consider designing and constructing either a bored tunnel (*BT*) or an immersed tube tunnel (*ITT*) for the submerged portion of the project. Note that the maps and figures provided in this report are for general illustration purposes only. For preliminary design details, the reader should review the project's website <u>http://hrbtexpansion.org</u> including the request for proposal documents.

In general, sediments to be removed/managed as part of the HRBT expansion could include dredge excavations (for ITT installation, trestle removal/installation, island expansion activities, potential access channels, etc.) and spoils generated from the tunnel boring machine in a BT method. Potential management/disposal options for sediment/dredge spoils include upland disposal (such as in a permitted quarry/mining pit reclamation), landfill disposal at a permitted commercial landfill and/or ocean disposal (with Section 103 approval). The design-build (*DB*) offeror may consider, but is not limited to, these options or others including a beneficial reuse such as shoreline nourishment or restoration. It should be noted that additives like polymers and slurry/grout material are reportedly introduced into the various processes like BT drilling, and therefore could be part of the final spoils/material to be managed. This *Preliminary Sediment Study Report* could not predict various DB influenced project activities like potential additive mixtures or differing sediment processing/dewatering procedures. Therefore, the offerors will have to take these construction and management processes into consideration for their proposal including the potential influence and restrictions should additives be used during construction.

A geotechnical study of sediments was performed for the HRBT expansion project by Jacobs Engineering Group (Jacobs) of Boston, Massachusetts and Warren George Incorporated (WGI) of Jersey City, New Jersey. For details of the geotechnical study such as borehole coordinates and borehole logs with sediment descriptions, the reader should review the geotechnical report. For this *Preliminary Sediment Study* described herein, samples of sediment were also collected for chemical testing from 12 of the geotechnical boreholes. This sediment chemical testing effort focused on providing testing information of sub-bottom materials for DB offerors to consider in evaluating potential sediment management/disposal options for preparing their proposal. It is important to note that adjustments to the design/approach could modify the extent or configuration of both the tube and trestle segments along the alignment. Therefore, the information provided from this study is intended as a general screening of subsurface conditions. Follow-up sampling/testing will likely be required to verify and fully characterize conditions along the final alignment/configuration and DB means and methods. In addition, a separate environmental study (*Phase II Environmental Site Assessment* dated July 9, 2018 by Cardno) was prepared to provide information on the Willoughby Spit part of the project (Willoughby Spit project staging/equipment laydown area).

1.2 Scope of Investigation

The screening-level sampling results presented in this report provide preliminary information to the DB offerors to consider in evaluating potential disposal and management options.

The tasks required to meet this objective included:

> Sediment sampling – Acquire bulk sediment and surface water samples at 12 locations;

- Laboratory testing –Test certain chemical and physical parameters typically required for disposal considerations; and
- > Report Provide the sampling framework, methods and results in context of disposal option considerations.

1.3 Sampling Plan

The Sampling and Analysis Plan (*SAP*) submitted by Cardno to VDOT in December 2017 addressed typical components for both ocean and upland disposal. However, it is important to note that this report likely does not address all considerations required for gaining approval for disposal. For this study, samples were collected of the upper 10 feet of sediment at each of the 12 boring locations (referred to as B-001, B-003, B-008, B-013, B-017, B-023, B-028, B-030, B033, B-038, B-039, and B-044) spaced along the tunnel and trestle alignments (*Site Map, Appendix B*). This uppermost 10-foot sediment horizon was presumed to be the most probable zone potentially exposed to any anthropogenic impacts, and therefore was selected for testing. Deeper horizons were also sampled at two mid-channel locations (B-017 and B-023) where spoils could be generated from tube installation. At each boring location, a surface water sample was also obtained for testing. The testing approach in this preliminary study was an initial screening and not necessarily full characterization for either testing frequency or test parameters including bioassay testing. Samples were taken to provide general information for the DB offeror to evaluate management/disposal options such as upland disposal, landfill disposal or ocean disposal. It is Cardno's understanding that sediment disposal at the *Craney Island Dredged Material Management Area* operated by the U.S. Army Corps of Engineers (*USACE*) facility appears not applicable for the HRBT expansion as that facility is to support navigation improvement projects.

1.3.1 Upland Disposal

To provide information on a potential upland disposal scenario, requirements were reviewed for an example site called the Weanack Land Limited, LLC's (Weanack) facility at Shirley Plantation along the James River in Charles City County, Virginia. The Weanack facility was chosen for general comparison purposes, but is not to be construed as an endorsement or recommendation. The Weanack Land Reclamation Project is permitted under Virginia Department of Environmental Quality (DEQ) Virginia Pollution Abatement (VPA) Permit No. VPA00579 – Modification Date December 12, 2014. The VPA Permit states that dredge material may be disposed at Weanack if testing indicates that parameter concentrations are equal to or less than their tabulated Exclusion Criteria (EC). For the HRBT preliminary characterization, sediments were analyzed for parameters consistent with the Weanack permit including metals, polychlorinated biphenyls (PCBs), pesticides, and polyaromatic hydrocarbons (PAHs). The test results were then compared to the EC. Estuarine and marine dredge materials are placed in Weanack's Earle Basin, a purpose built upland basin. The inherent concentrations of sodium and chloride may likely preclude sediments from the HRBT project area from being placed as "clean fill" at Weanack outside the Earle Basin. In addition, sediments were tested for volatile organic compounds (VOCs), kepone, physical characteristics including grain size distribution, total organic carbon (TOC), total solids/percent moisture, specific gravity, bulk density, Atterberg limits and agronomic properties including acid-base potential or Acid-Base Accounting (ABA) to provide further data for evaluating management/disposal.

1.3.2 Landfill Disposal

To provide information on a potential landfill disposal scenario, requirements were reviewed under the Solid Waste Management Regulations (9VAC-20-81). In general, Virginia waste disposal facilities such as sanitary or industrial landfills don't accept Resource Conservation and Recovery Act (*RCRA*) hazardous wastes, free liquids, PCB wastes over 50 parts per million (ppm) or dioxins over 0.001 parts per million. However, these Subtitle D landfills can accept non-hazardous wastes and require a DEQ permit with regulatory compliance including design and operational performance standards including liners, leachate collection and monitoring. Depending on the specific permit, a particular landfill may have a specific concentration of petroleum-impacted waste it can receive (based on the total petroleum hydrocarbon or TPH level). In addition, depending on the characteristics, soil/sediment type material may potentially be used by landfills as daily cover.

Most of the test parameters to evaluate upland disposal could also be used to evaluate landfill disposal. However, additional landfill scenario tests performed in this preliminary characterization included petroleum compounds, organic halides and paint filter test.

1.3.3 <u>Ocean Disposal</u>

To provide preliminary information on a potential ocean disposal scenario, requirements were reviewed for the Norfolk Ocean Disposal Site (*NODS*) located in the Atlantic Ocean approximately 17 miles east of Cape Henry. The NODS has been formerly designated for the placement of suitable dredged materials pursuant to the Marine Protection, Research, and Sanctuaries Act (*MPRSA*). The USACE may implement MPRSA in projects involving ocean disposal of dredged materials but relies on EPA's ocean dumping criteria (and EPA review) when evaluating requests for the transportation of dredged material for the purpose of disposal.

For an ocean disposal evaluation, both sediment and surface water samples collected from the 12 borehole locations were separately analyzed. In addition, a sediment and water mixture was also combined to create a third sample type called an elutriate to simulate the dissolution of sediment constituents into the water column during open-water (ocean) dredge disposal. Elutriate samples were only prepared for the shallower sub-bottom horizons since spoils generated from deeper bored horizons would presumably contain drilling fluid additives/residues and therefore likely be ineligible for ocean disposal.

There are minor variations in the testing parameters for the sediment, water, and elutriate for ocean disposal but in general consist of pesticides, dioxins and furan congeners, PCB congeners, metals (both total and simultaneous extracted (SEM)), and semi-volatile organic compounds (*SVOCs*) including PAHs. Note that this preliminary analytical testing approach does not constitute full Section 103 characterization including ecotoxicology or tissue testing.

1.4 Project Setting

Sediments encountered in the project area consist of native geologic formation materials (i.e. Norfolk Formation and Yorktown Formation) and recent (Holocene) alluvial materials. In general, grain size of the probable dredge material is generally silty clay with embedded sands consistent with the native geologic formation; however, the geotechnical report should be reviewed for the full sediment profile descriptions. Because the proposed project alignment parallels the existing HRBT and crosses the historic deep water harbor and approaches, it is expected that sub-bottom materials have been disturbed by human activity including dredging, dredge disposal and construction activity. Several areas along the alignment are known to have been disturbed and modified particularly areas fringing the existing tunnel islands and along the southern trestle approaches where significant filling has occurred in the past. Likewise, the construction of the HRBT bridge tunnel complex beginning in the late 1950s, combined with earlier harbor channel dredging and improvements has modified the hydraulic and depositional properties of the outer Hampton Roads basin, creating new areas of scour and fill over the last 60 years. Water depths along the project alignment range from as little as five feet Mean Low Low Water (MLLW) along the trestle sections to nearly 70 feet in the mid-channel.

2 Field and Laboratory Methods

Investigation procedures used in this study are largely based on the USACE/United States Environmental Protection Agency (EPA) *Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual*, commonly referred to as the Inland Testing Manual (ITM).

2.1 Site Access and Coordination

Sample collection was coordinated with the Jacobs/WGI geotechnical drilling program commissioned by VDOT to support the preliminary engineering design. Cardno, Inc. was contracted by VDOT to coordinate with the

drilling and geotechnical contractors to obtain samples required for the preliminary sediment study. A Cardno geologist was on board the drilling rig during all sampling events included in this report.

Drilling equipment including the drilling barge, drill rig, and support vessels was provided by WGI. The drilling platform consisted of a 130-foot by 32-foot steel barge (CT-511) equipped with two 90-foot spuds which were lowered into the seabed to maintain a fixed position over each drill hole. A mobile B-51 rotary drill rig positioned amidships deploys drilling rods through a wet well located in the center of the barge. A 58-foot, 600-hp tug operated by WGI was used to transport the drilling barge to the job site and to maneuver it into position over each boring location as determined by a survey-grade Global Positioning System (*GPS*). Drill crews were shuttled to and from the barge using a 35-foot aluminium crew boat. Environmental sampling operations began on November 27, 2017 and were complete by April 5, 2018.

2.2 Sample Locations

Sub-bottom samples for sediment testing were collected in conjunction with the geotechnical sampling and testing undertaken for preliminary design. Geotechnical test borings were advanced along and in some cases parallel to the proposed highway centreline. However, environmental samples were only collected at 12 of the locations for this preliminary screening effort. As previously noted, all 12 project boreholes were sampled from the upper ten feet of sediment. In addition, deeper samples were also collected in two of the boreholes in the channel. Sample locations and depths are summarized below in *Table 1. Figures 1-7* in *Appendix C* provide general borehole locations depicted on the base maps from the *Geotechnical Plan for the HRBT Location (VDOT, May 2017).* Cardno used the same borehole nomenclature as the geotechnical boreholes, so for details of the borehole including coordinates and logging/material descriptions, the reader should review the geotechnical report.

2.3 Boring and Sample Identification

For each sediment sample, boring numbers are appended with the sample interval such as 0-10', 80-90' etc. indicating the depth interval relative to the seabed or mud line. Water samples were simply numbered with the boring location.

2.4 Sediment Sampling

Most sub-bottom samples were collected using a combination of 2-foot split spoon (SPT) samplers and/or a 10-foot bulk core barrel advanced using the mud-rotary drilling method. Poor recovery at some locations required use of a 10-foot bulk core barrel that recovered sediments from the entire ten-foot interval in one run.

Once the drilling barge was moved on station, each hole began with the installation of a 12-inch surface casing, generally advanced to a depth of 10 or 20 feet into the seabed, depending on the stability of the substrate. The surface casing extended above the seafloor to just below the height of the drilling table. The borehole was then advanced inside the surface casing by driving either the SPT sampler with blows using a 100-lb hydraulic hammer or with the 10-foot core barrel using hydraulic pressure. In cases where the SPT sampler was used, sediment samples were obtained by pushing either a 2- or 3-inch by 2-foot long SPT sampler through each sediment horizon. Drilling mud was introduced and circulated through the borehole to maintain a stable hole. In cases where the sediment was coarse and recovery poor, multiple runs of the SPT sampler or the 10-foot bulk core barrel were required to obtain sufficient volume for the environmental (dredge) samples.

For the geotechnical study, the Jacobs engineer collected sediment samples from the SPT samplers and kept records of blow counts and sediment characteristics. Since the geotechnical study only required archiving a small aliquot of sediment for laboratory study, the remainder could be dedicated to the dredge spoil sample. After each penetration of the SPT, the 2-foot long sampler was withdrawn from the hole, removed from the drill rod, opened, inspected and sampled. In most cases, dredge spoils were collected from the same SPT sampler as the geotechnical sample. For the dredge spoil analyses, sediments recovered from the entire ten-foot target interval were collected in a clean plastic bucket and then mixed to create a composite sample.

TABLE 1 – SUMMARY OF BOREHOLE LOCATIONS AND ANALYSES OF SEDIMENT SAMPLES

Geotech Borehole ID	Figure #	Location	Depth (feet from top of sediment)	Depth (feet MLLW ¹)	Ocean Disposal Analyte List	Upland and Landfill Disposal Analyte List
B-001	2	North Bridge – Trestle	0-10	3-13	Х	Х
B-003	2	North Bridge – Trestle	0-10	7-17	Х	Х
B-008	3	North Island – North Island Expansion	0-10	11-21	Х	Х
B-013	4	Bored Tunnel/ITT SE of North Island Expansion	0-10	18-28	Х	Х
B-017	4	Inbound Thimble Shoals Channel NW: ITT Top Dredging Unit ITT Bottom Dredging Unit Bored Tunnel	0-10 20-30 80-90	75-85 95-105 155-165	х	X X X
B-023	4	Outbound Thimble Shoals Channel SE: ITT Top Dredging Unit ITT Bottom Dredging Unit Bored Tunnel	0-10 28-38 88-98	70-80 98-108 158-168	х	X X X
B-028	4	Bored Tunnel/ITT NE of South Island Expansion	0-10	12-22	Х	Х
B-030	5	South Island – South Island Expansion	0-10	13-23	Х	Х
B-033	6	South Bridge – Trestle	0-10	6-16	Х	Х
B-038	6	South Bridge – Trestle	0-10	4-14	Х	Х
B-039	7	Willoughby Bay – Trestle	0-10	4-14	Х	Х
B-044	7	Willoughby Bay – Trestle	0-10	6-16	Х	Х

MLLW = Mean Low Low Water based on North American Datum (NAD) 1983

2.5 Sample Collection, Labelling, Transport and Storage

Sediment and water samples were collected using methods designed to insure the materials originated from the designated boring location and from the planned target horizon or depth. Following recovery, all samples were properly containerized, labelled, preserved and packaged for shipment to maintain sample integrity during transport to the laboratory.

Upon arrival at each drilling location, Cardno staff confirmed station identity and geographic coordinates of the site as displayed on the ship's GPS navigation system and as confirmed by the drilling superintendent. Site locations were then compared against the intended sample inventory coordinates. The time of day and geographic coordinates of the location were immediately recorded in the field log along with the water depth as reported by the drilling supervisor measured from the seafloor to the drill collar.

2.5.1 <u>Water Sample Collection</u>

Once on station, the surface water sample was collected using a 12-volt diaphragm pump equipped with a 20foot polyethylene, 5/8-inch diameter intake hose weighted and marked to withdraw water from a depth of 10 feet below the water surface or at least one foot off the seafloor at locations where the water depth was less than 10 feet. Before sampling, the pump was started and allowed to purge for three minutes before the discharge line was inserted in a 5-gallon, laboratory-supplied, pre-cleaned polyethylene sample jug or carboy. The sample container was filled to overflowing and then capped, sealed, labelled and placed in a cooler with ice for transport to the laboratory. Iced sample coolers were maintained at a temperature of 4°C or lower for the duration of the holding period. Each water sample was typically collected within an hour of the corresponding sediment sample.

Cardno[®]

Water samples were not filtered and therefore reflect a "totals" concentration instead of a "dissolved" concentration.

2.5.2 <u>Sediment Sampling</u>

Drilling typically commenced immediately upon arrival on site although in some cases, equipment breakdowns, weather, shift changes or other events delayed operations for some period of time. However, once drilling began, the surface casing was set, and an attempt was made to recover the upper ten feet of sediment in two-foot increments using the SPT sampler. As each SPT was collected, the core barrel was opened, the material examined, described and accumulated in a new dedicated 5-gallon bucket which remained sealed with a plastic lid between each core run. An attempt was made to collect and composite approximately 2.5-gallons of sediment per 10-foot target horizon, or enough material to fill six pre-cleaned, 32-ounce laboratory glass sample jars and two one-gallon plastic Zip-Lok[®] freezer bags. This process typically required compositing material from all five SPT samplers (2 feet per run) and in some cases additional SPTs were deployed across the sample interval to obtain sufficient material for all analyses. As mentioned earlier, coarse sediments required the use of the ten-foot core barrel. Once sufficient material was accumulated in the stainless steel mixing bowl, it was thoroughly homogenized and containerized in the pre-labelled glass jars and plastic bags, which were immediately sealed.

2.6 Quality Assurance/Quality Control

2.6.1 Documentation and Chain of Custody

The borehole number, date obtained, and project information were recorded on labels attached to each corresponding sample jar or bag and corresponding notes recorded in the field notebook at the time of collection. Since dredge spoil samples represent a composite of multiple SPT runs across five or more horizons, the sample time was recorded as the first SPT sample (0-2 feet below mudline) was retrieved from the drill hole. This collection time initiated the holding time period for all sediment samples. For elutriate water samples, sample and holding times were initiated when pumping into the sample container commenced.

All samples were entered on a chain of custody (*COC*) form documenting the sample ID, collection date and time, media type (sediment/water) and requested analytes. The COC forms followed samples from the field during transport and to the laboratory for delivery by Cardno personnel. The transport coolers remained sealed until arrival at the lab. All samples were kept under the exclusive custody of Cardno personnel throughout the process. Upon arrival at the lab, custody was transferred to laboratory staff who signed the COC form, unsealed the coolers, inspected the contents for completeness and damage and checked the sample temperature blank.

2.6.2 Holding Times

Holding times for all sediment samples including collection and transport were kept to within 48 hours from the time of initial water sample collection in order to meet controlling minimum time limits for submitting the accompanying water samples for nitrate/nitrate for elutriate testing. Consequently, all samples were hand delivered to the laboratory by Cardno field staff within 48 hours of collection.

2.6.3 Field Equipment Decontamination

Equipment and materials coming in contact with the sediment and water samples were thoroughly decontaminated to reduce the chance for cross-contamination or exposure to extraneous chemicals or petroleum.

Sediment samples only came in contact with the SPT sample barrel, metal sampling scoop and five-gallon plastic bucket before being containerized and transported to the laboratory. Between each deployment, SPT sample tubes were decontaminated with laboratory supplied deionized water and Alconox[®] using a stiff bristle scrub brush followed by a rinse with deionized water. The sample bowl and spoon were also scrubbed with the Alconox/water mixture followed by a de-ionized water rinse before each composite sample accumulation.

The pump used for collecting the water samples was decontaminated by pumping deionized water through the entire pump and hose assembly between each sample. No other equipment or materials came in contact with the water samples other than the polyethylene containers themselves.

To verify the efficacy of the decontamination process, Cardno collected an equipment rinsate blank at borehole site B-030. The rinsate followed the normal decontamination process described above for both sediment and water sampling equipment and consisted of spraying the SPT sampler with laboratory-supplied deionized water, capturing this water in the sample mixing pan, stirring it with the mixing spoon and then capturing a sample of this water in 5-gallon polyethylene containers.

2.6.4 Duplicate Sample

Duplicate sediment and water samples were collected and analyzed from the B-044 boring site to provide a basis for evaluating the repeatability of analyses derived from each medium. Duplicate sediment samples were collected by splitting in half the composited 0-10' sample interval and then separately containerizing and labelling two sets of containers. Both sets of containers were submitted to the laboratory for analysis of all parameters. An effort was made to insure equal splits of the entire interval were included in each split by thoroughly mixing the composite before splitting and containerizing the samples.

Duplicate water samples were collected by filling two sets of containers – alternately filling the original and duplicate containers so as to minimize any temporal variations in water characteristics over the course of the sampling period (roughly 30 minutes).

Duplicate elutriate samples were prepared at the laboratory by combining the sediment and water sample splits described above.

2.7 Laboratory Analytical Methods

The bulk sediment and water samples were submitted by Cardno directly to Air Water and Soil Laboratories Inc. (AWS) of Richmond, Virginia for chemical and physical analysis and to Virginia Tech Soil Laboratory for agronomic testing. A summary of analytical methods for each sample type is presented in *Table 2*. For some tests, samples submitted to AWS were split and sent to subcontractor laboratories including Eurofins (Eurofins Calscience and Eurofins Lancaster) for organotins, dioxins, furans and acid volatile sulfide and Testamerica for pesticides. Note that chemical analysis of the sediment samples is reported on a dry basis, which is common for sediment disposal evaluations. Splits were also sent to Geotechnical Testing Services (GTS Coraopolis, PA) for grain size, Atterberg Limits and specific gravity. *Table 2* summarizes the analyses and laboratories.

TABLE 2 – SUMMARY OF ANALYTICAL METHODS USED IN EVALUATING SEDIMENT, WATER AND ELUTRIATES

			Bulk Sediment	Elutriate	Surface Water
Method	Analytes	Lab	Ocean/Upland/Land fill Disposal	Ocean Disposal	Ocean Disposal
SW6010C/7471B	Total Metals/Mercury	AWS	X	X	х
SW6010C/7471B	Simultaneous Extracted Metals/Mercury	Eurofins	Х	Х	х
SW8015C	TPH-Volatiles (Gasoline Range Organics/GRO) and TPH-Diesel Range Organics (DRO)	AWS	x		
SW8260B	Volatile Organic Compounds (VOCs)	AWS	Х	Х	
SW8270D	Semi-volatile Organic Compounds (SVOCs)	AWS	×	х	х
SW8082A	Organochlorine Pesticides	AWS	Х	Х	х
SW8141A	PCB Aroclors	AWS	х		
EPA 1668	PCB Congeners & Individual Congeners	Eurofins	х	Х	х
SW8081	Organochlorine Pesticides	TA	Х	Х	х
SW8141A	Organophosphorus Pesticides (GC/NPD)	AWS/ TA	х	х	х
EPA350.1 (R2.0)	Ammonia as N	AWS	х	Х	x
SW9012B	Cyanide	AWS	Х	Х	Х
SW9056A	Extractable Organic Halides (EOX)	AWS	Х	Х	
SW9056A	Nitrate as N	AWS	Х	Х	
Calc	Nitrate as N	AWS	Х	Х	х
SW9056A	Nitrite as N	AWS	Х	Х	х
SM-22 4500-NO3F	Nitrate + Nitrite as N	AWS	Х	Х	х
SM22 4500PE-2011	Phosphorus (total)	AWS	Х	Х	х
SW9095B	Paint Filter	AWS	Х		
SM18 2540G	Percent Solids	AWS	Х		
SW9060A	Total Organic Carbon	AWS	Х	Х	х
SW9040C	pH	AWS	Х		
SW9034	Sulfide	AWS	Х	Х	х
EPA351.2 R2.0	TKN as N	AWS	Х	Х	Х
ASTM4318D	Atterberg Limits	GTS	Х		
ASTM-D854	Specific Gravity	GTS	Х		
EPA1613B	Dioxin and Furans	Eurofins	х		
Krone et al	Organotins	Eurofins	Х	Х	Х
EPA-821-R-91-100	Acid Volatile Sulfide	Eurofins	Х	Х	
ASTM D6913- 17/D4318-17/D7928- 17	Grain Size – Particle Size Distribution	GTS	x		
Sobek	Total Sulfur/ Potential Peroxide Activity	VT	Х		

AWS=Air Water and Soil, Richmond, VA; Eurofins = Eurofins Garden Grove, CA; TA=TestAmerica, Pittsburgh, PA; GTS=Geotechnical Testing Services; VT=Virginia Tech Soils Lab, Blacksburg, VA

3 Data Comparisons

The laboratory data were compared to the various reference values depending on the potential disposal scenario. The comparison approach is summarized below.

3.1 Upland Disposal

To screen for an upland disposal option, bulk sediment data were compared to Weanack's EC.

3.2 Landfill Disposal

To screen for disposal in a Virginia landfill, the data were compared to typical permit requirements such as RCRA hazardous waste limits (40 CFR 261.24 *Characteristics of Hazardous Waste*) along with PCBs, TPH and paint filter test.

3.3 Ocean Disposal

To screen for ocean disposal, the sediment results were compared to the National Oceanic and Atmospheric Administration's (*NOAA*) *Screening Quick Reference Tables*, or SquiRTs (2008). The SquiRTs were developed to help evaluate potential risks from contaminated water, sediment, or soil and reflect a reference tool presenting screening concentrations for inorganic and organic contaminants in various environmental media. For this HRBT preliminary sediment study, the primary comparison to evaluate potential ocean disposal was the "Effects Range-Low" (*ERL*), indicative of concentrations below which adverse effects rarely occur. If an ERL was exceeded, then a comparison was also made to the "Effects Range-Median" (*ERM*) values, representative of concentrations above which effects frequently occur.

Results of elutriate and surface water testing were compared to the NOAA SquiRT values listed in the following column: *Surface Waters, Marine, Acute*. Similar to the sediment SquiRT values, the water concentrations are also to be used as a general screening comparison. The NOAA guidance describes that preference for surface water benchmarks is given to U.S. EPA Ambient Water Quality Criteria (*AWQC*). This is generally followed by Tier II Secondary Acute Values (*SAVs*) or available standards and guidelines from other regulatory agencies. However, note that SquiRT values listed as proposed or footnoted to an international reference were not included in the data tables.

4 Results

The laboratory certificates of analysis are provided in *Appendix D*, which contain the laboratory detections along with the laboratory QA/QC documentation. The results for each of the sample media are summarized in *Tables 3-5*. The results tables are divided into *Sediment – Table 3; Elutriate – Table 4;* and *Water – Table 5*. The following should be noted while viewing the tables:

- > The sediment chemical analyses are typically reported as dry weight;
- > The tables depict parameters grouped by type (metals, pesticides, etc.) where the units (mg/kg, ug/kg, etc.) may differ by group, but the applicable units are provided with each group description header;
- > Non-detects are indicated by a "<" sign;
- > Bolded results shown on the tables indicate detections in the samples;

				r						• •											
Method/		SQuiRT	Guidelines	Weanack Exclusion Criteria									BOREHOLES	i							
CAS Pa	arameter/Lab Certificates	(Ocean	Disposal)	(Upland	B-001	B-003	B-008	B-013	B-017	B-017	B-017	B-023	B-023	B-023	B-028	B-030	B-033	B-038	B-039	B-044	B-044
CAS				Disposal)	0-10'	0-10'	0-10'	0-10'	0-10'	20-30'	80-90'	0-10'	28-38'	88-98'	0-10'	0-10'	0-10'	0-10'	0-10'	0-10'	Dup
				Disposalj	0-10	0-10	0-10	0-10	0-10	20-30	80-90	0-10	20-30	00-90	0-10	0-10	0-10	0-10	0-10	0-10	0-10'
		ERL	ERM		18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0257	18A0118	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
% solids				-	70.9%	76.0%	81.3%	81.6%	76.0%	66.3%	80.3%	56.7%	52.8%	84.4%	87.7%	84.2%	79.4%	72.1%	59.7%	54.1%	54.2%
Total Recoverable Metals	(mg/kg)													-				-			
7429-90-5 Aluminum		-	-	-	980	4,380	2,750	1,150	5,040	16,900	NT	27,800	23,700	NT	1,010	457	630	9,750	19,800	16,100	12,300
7440-36-0 Antimony		-	-	410	< 6.72	< 6.01	< 5.91	< 5.65	< 5.70	< 6.92	< 5.86	< 8.16	< 9.22	< 5.82	< 5.21	< 5.93	< 5.89	< 6.64	< 7.94	< 6.28	< 5.89
7440-38-2 Arsenic		8.2	70	41	< 1.34	1.91	1.21	1.14	3.02	5.72	4.95	8.53	9.11	3.09	1.43	1.5	< 1.18	6.26	11.3	14.4	16.3
7440-39-3 Barium		-	-	19,000	3.17	11.9	9.15	9.09	13.7	31.4	18.3	54	69.5	16.2	3.33	6.9	6.39	24.8	37.8	38.1	32.5
7440-41-7 Beryllium		-	-	2,000	< 0.269	< 0.240	< 0.236	< 0.226	< 0.228	< 0.277	< 0.234	< 0.326	< 0.369	< 0.233	< 0.208	< 0.237	< 0.236	< 0.266	< 0.318	< 0.251	< 0.236
7440-43-9 Cadmium		1.2	9.6	810	< 0.269	0.242	0.417	< 0.226	0.367	0.998	0.728	1.64	1.57	0.416	< 0.208	< 0.237	< 0.236	0.765	1.31	2.01	2.11
7440-47-3 Chromium		81	370	1,200	4.16	7.90	7.11	3.45	8.78	26.7	18.3	37.9	34.3	5.96	8	2.34	3.14	22.2	33.1	35.4	33.2
7440-48-4 Cobalt		-	-	300	0.751	1.81	1.84	0.811	2.86	8.15	2.84	13.3	11.5	1.71	1.01	0.404	0.547	6.68	9.04	8.31	8.57
7440-50-8 Copper		34	270.0	4,300	< 3.36	< 3.00	< 2.95	< 2.82	< 2.85	< 3.46	< 2.93	11.5	6.26	< 2.91	< 2.60	< 2.97	< 2.95	< 3.32	5.04	11.6	13
7439-89-6 Iron		-	-	150,000	1,520	4,470	4,700	2,030	8,250	21,300	14,300	34,300	33,400	7,480	2,730	864	1,500	15,600	28,300	30,600	30,800
7439-92-1 Lead		46.7	218	800	5.3	3.42	3.02	2.08	4.17	6.32	3.8	12.00	11.4	1.98	1.88	3.02	1.21	6.32	10.2	32.6	26
7439-96-5 Manganese		-	-	-	13.2	37.8	23.3	21.7	153	298		1040	661		40.7	13.6	19.2	212	221	230	241
7439-97-6 Mercury		0.15	0.71	100	< 0.010	0.012	< 0.008	< 0.009	< 0.010	< 0.011	< 0.009	0.014	0.018	< 0.009	< 0.009	< 0.009	< 0.010	< 0.010	0.015	0.093	0.071
7440-02-0 Nickel		20.9	51.6	1,000	1.45	3.7	2.48	1.22	5.13	15.3	5.79	25.3	22.1	2.71	2.96	0.983	0.938	11.7	18.7	16.4	16
7782-49-2 Selenium		-	-	5,100	< 3.36	< 3.00	< 2.95	< 2.82	< 2.85	< 3.46	< 2.93	< 4.08	< 4.61	< 2.91	< 2.60	< 2.97	< 2.95	< 3.32	< 3.97	< 3.14	< 2.95
7440-22-4 Silver		1	3.7	5,100	< 0.672	< 0.601	< 0.591	< 0.565	< 0.570	< 0.692	< 0.586	< 0.816	< 0.922	< 0.582	< 0.521	< 0.593	< 0.589	< 0.664	< 0.794	< 0.628	< 0.589
7440-28-0 Thallium		-	-	5	< 3.36	< 3.00	< 2.95	< 2.82	< 2.85	< 3.46	< 2.93	< 4.08	< 4.61	< 2.91	< 2.60	< 2.97	< 2.95	< 3.32	< 3.97	< 3.14	< 2.95
7440-31-5 Tin		-	-	-	< 6.72	< 6.01	< 5.91	< 5.65	< 5.70	< 6.92		< 8.16	< 9.22		< 5.21	< 5.93	< 5.89	< 6.64	< 7.94	< 6.28	< 5.89
7440-62-2 Vanadium		-	-	5,200	3.85	9.32	6.58	4.31	10.8	29.9	15.8	45.5	40.7	6.77	3.76	1.68	2.1	28.6	43.2	47.6	41.7
7440-66-6 Zinc		150	410	7,500	7.85	11.3	7.4	4.7	16.2	43.9	18.4	76.4	68	8.82	6.39	3.67	2.88	29.7	55.4	91.5	96.9
Simultaneous Extracted M	/letals (umoles/g)	-	•		•	•	•	•	•	•	•	•			•	•			•	•	*
7440-43-9 Cadmium	·	-	-	-	0.000340 J	0.00109 J	0.000666 J	0.000472 J	0.000314 J	< 0.000171	NT	<0.000188	<0.000241	NT	0.000352 J	0.000252 J	< 0.000139	0.000449 J	0.000769 J	0.00291 J	0.00237 J
7440-50-8 Copper		-	-	-	0.00968	0.0774	0.0142	0.0340	0.0153	<0.00135	NT	0.0409	0.314	NT	0.0576	0.0306	0.0177	0.102	0.0752	0.115	0.126
7439-92-1 Lead		-	-	-	0.00543	0.0139	0.00749	0.00619	0.00961	0.00725	NT	0.0216	0.0465	NT	0.00577	0.00431	0.00478	0.016	0.0305	0.0834	0.065
7440-02-0 Nickel		-	-	-	0.00709 J	0.0142	0.0107 J	0.148	0.0764	0.0314	NT	0.140	0.433	NT	0.218	0.109	0.122	0.349	0.389	0.0671	0.215
7440-66-6 Zinc		-	-	-	0.0563	0.245	0.0419	0.0529	0.0778	0.236	NT	0.356	0.428	NT	0.0466	0.0429	0.0393	0.145	0.312	0.828	0.645
7439-97-6 Mercury		-	-	-	< 0.0000089	< 0.0000099	< 0.0000099	<0.000089	< 0.000093	< 0.000011	NT	< 0.000012	< 0.000015	NT	< 0.000085	< 0.0000086	< 0.000087	< 0.0000097	< 0.000012	< 0.000014	< 0.000013
- Acid Volatile S	Sulfide	-	-	-	<0.78	<0.87	<0.84	<0.77	<0.79	<0.90	NT	<0.97	<1.3	NT	<0.72	<0.75	<0.75	<0.86	<1.1	14.3	9.3
- Moisture %		-	-	-	19.4	27.4	24.8	18.5	20.6	30	NT	35.3	50.1	NT	13.1	15.9	16.0	26.7	40.8	48.3	45.5
PCBs (mg/kg)		-																			
12674-11-2 Aroclor 1016		-	-	21	< 0.137	<0.112	<0.112	<0.109	< 0.125	< 0.148	< 0.113	< 0.172	< 0.179	< 0.109	< 0.109	< 0.116	<0.118	< 0.121	< 0.167	< 0.176	< 0.183
11104-28-2 Aroclor 1221		-	-	0.62	< 0.137	<0.112	<0.112	<0.109	< 0.125	< 0.148	< 0.113	< 0.172	< 0.179	< 0.109	< 0.109	< 0.116	<0.118	< 0.121	< 0.167	< 0.176	< 0.183
11141-16-5 Aroclor 1232		-	-	0.62	< 0.137	<0.112	<0.112	<0.109	< 0.125	< 0.148	< 0.113	< 0.172	< 0.179	< 0.109	< 0.109	< 0.116	<0.118	< 0.121	< 0.167	< 0.176	< 0.183
53469-21-9 Aroclor 1242		-	-	0.74	< 0.137	<0.112	<0.112	<0.109	< 0.125	< 0.148	< 0.113	< 0.172	< 0.179	< 0.109	< 0.109	< 0.116	<0.118	< 0.121	< 0.167	< 0.176	< 0.183
12672-29-6 Aroclor 1248		-	-	0.74	< 0.137	<0.112	<0.112	<0.109	< 0.125	< 0.148	< 0.113	< 0.172	< 0.179	< 0.109	< 0.109	< 0.116	<0.118	< 0.121	< 0.167	< 0.176	< 0.183
11097-69-1 Aroclor 1254		-	-	0.74	< 0.137	<0.112	<0.112	<0.109	< 0.125	< 0.148	< 0.113	< 0.172	< 0.179	< 0.109	< 0.109	< 0.116	<0.118	< 0.121	< 0.167	< 0.176	< 0.183
11096-82-5 Aroclor 1260		-	-	0.74	< 0.137	<0.112	<0.112	<0.109	< 0.125	< 0.148	< 0.113	< 0.172	< 0.179	< 0.109	< 0.109	< 0.116	<0.118	< 0.121	< 0.167	< 0.176	< 0.183
	sum of above 7 Aroclors		-	25.2	< 0.959	<0.784	<0.784	<0.763	<0.875	<1.036	<0.791	<1.204	<1.253	<0.763	<0.763	< 0.812	< 0.826	< 0.847	<1.169	<1.232	<1.281

125-75-0 Demeto 56-38-2 Ethyl P 121-75-5 Malathi	phos-methyl leton, o+s l Parathion athion hyl parathion DDD DDE	SQuiRT C (Ocean D ERL - - - - - - - - - - - - - - - - - - -		Weanack Exclusion Criteria (Upland Disposal) - - -	B-001 0-10' 18D0180 < 8.16 < 16.3	B-003 0-10' 18D0181	B-008 0-10' 17K0927	B-013 0-10' 17K0936	B-017 0-10' 18A0006	B-017 20-30'	B-017 80-90'	B-023 0-10'	BOREHOLES B-023 28-38'	B-023 88-98'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup
CAS Pesticides (ug/kg) 86-50-0 Azinpho 125-75-0 Demeto 56-38-2 Ethyl P 121-75-5 Malathi 56-38-2 Methyl 53-19-0 2,4'-DD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD) phos-methyl leton, o+s l Parathion thion yl parathion DDD DDD DDE	ERL - - - - - - - -	ERM - - - - - -	(Upland Disposal) - -	0-10' 18D0180 < 8.16	0-10' 18D0181	0-10' 17K0927	0-10'	0-10'	20-30'	-									-	Dup
86-50-0 Azinph 125-75-0 Demetr 56-38-2 Ethyl P 121-75-5 Malathi 56-38-2 Methyl 53-19-0 2,4'-DD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD	phos-methyl leton, o+s l Parathion athion hyl parathion DDD DDE		- - - -	-	< 8.16			17K0936	18A0006												0-10'
86-50-0 Azinph 125-75-0 Demetr 56-38-2 Ethyl P 121-75-5 Malathi 56-38-2 Methyl 53-19-0 2,4'-DD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD	phos-methyl leton, o+s l Parathion athion hyl parathion DDD DDE	- - - -	-	-		< 7.01				18A0257	18A0257	18A0118	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
125-75-0 Demetr 56-38-2 Ethyl P 121-75-5 Malathi 56-38-2 Methyl 53-19-0 2,4'-DD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD	leton, o+s I Parathion athion hyl parathion DDD DDE	- - - -	-	-		< 7.01		1	n												
56-38-2 Ethyl P 121-75-5 Malathi 56-38-2 Methyl 53-19-0 2,4'-DD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD	I Parathion athion nyl parathion DDD DDE	- - -	-		< 16.3	-	<7.21	< 7.33	47.6	< 8.01	NT	< 10.6	< 10.0	NT	< 6.54	< 7.03	< 7.38	< 8.26	< 10.00	< 10.4	< 10.7
121-75-5 Malathi 56-38-2 Methyl 53-19-0 2,4'-DD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD	athion nyl parathion DDD DDE	-	-	-		< 14.0	<14.4	< 14.7	< 14.8	< 16.0	NT	< 21.2	< 20.0	NT	< 13.1	< 14.1	< 14.8	< 16.5	< 20.0	< 20.7	< 21.3
56-38-2 Methyl 53-19-0 2,4'-DD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD	nyl parathion DDD DDE	-		-	< 8.16	< 7.01	<7.21	< 7.33	< 7.38	< 8.01	NT	< 10.6	< 10.0	NT	< 6.54	< 7.03	< 7.38	< 8.26	< 10.0	< 10.4	< 10.7
53-19-0 2,4'-ĎD 3424-82-6 2,4'-DD 789-02-6 2,4'-DD	DDD DDE		-	-	< 8.16	< 7.01	<7.21	< 7.33	< 7.38	< 8.01	NT	< 10.6	< 10.0	NT	< 6.54	< 7.03	< 7.38	< 8.26	< 10.0	< 10.4	< 10.7
3424-82-6 2,4'-DD 789-02-6 2,4'-DD	DDE	-		-	< 8.16	< 7.01	<7.21	< 7.33	< 7.38	< 8.01	NT	< 10.6	< 10.0	NT	< 6.54	< 7.03	< 7.38	< 8.26	< 10.0	< 10.4	< 10.7
789-02-6 2,4'-DD			-	-	17	0.56	0.072 JP	<0.11	<0.1	<2.6	<0.11	< 0.064	0.027 J P	0.021 J P	0.40	3.6	< 0.05	<0.11	<0.14	<0.16	<0.15
,	DDT	-	-	-	0.42	< 0.054	<0.1	<0.11	<0.1	<2.6	<0.11	< 0.064	< 0.075	<0.048	< 0.046	0.11	< 0.05	<0.11	<0.14	0.072 J	<0.15
72-54-8 4,4'-DD		-	-	-	12	0.44	<0.1	<0.11	<0.1	<2.6	<0.11	< 0.064	< 0.075	<0.048	0.24	3.0	< 0.05	<0.11	<0.14	<0.16	<0.15
		2	20	7,200	30	1.2	<0.1	<0.11	<0.1	<2.6	<0.11	0.075	0.042 J	<0.048	0.79	6.5	<0.05	<0.11	<0.14	0.16 P	0.17 P
72-55-9 4,4'-DD		2.2	27	5,100	4.2	0.15	<0.1	<0.11	<0.1	<2.6	<0.11	0.063 J	<0.075	<0.048	0.10	0.93	<0.05	<0.11	<0.14	0.45	0.43
50-29-3 4,4'-DD		1	7	7,000	87	4.0	<0.1	<0.11	<0.1	<2.6	<0.11	0.074	<0.075	<0.048	2.5	32	<0.05	<0.11	0.070 J P	<0.16	<0.15
	I DDT (ND=0)	1.58	46.1	-	99.0	4.4	0	0	0	0	0	0.074	0	0	3.29	35.0	0	0	0	0.45	0.43
309-00-2 Aldrin		-	-	110	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	<0.064	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
319-84-6 alpha-E		-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	<0.064	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
319-85-7 beta-Bl		-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	<0.064	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
	rdane (technical)	0.5	6.00	-	<0.57	<0.54	<1	<1.1	<1	<26	<1.1	<0.64	<0.75	<0.48	<0.46	<0.54	<0.5	<1.1	<1.4	<1.6	<1.5
	robenside	-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	<0.064	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
1861-32-1 DCPA		-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	<0.064	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	0.14 J P	0.12 J P
319-86-8 delta-B		-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	0.080	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
60-57-1 Dieldrin	drin	0.02	8	110	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	0.087	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
959-98-8 Endosu	osulfan I	-	-	3,700,000	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	0.062 J	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
33213-65-9 Endosu	osulfan II	-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	<0.064	<0.075	<0.048	<0.046	0.021 J P	<0.05	<0.11	<0.14	<0.16	<0.15
1031-07-8 Endosu	osulfan sulfate	-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	0.049 J	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
72-20-8 Endrin	rin	-	-	180,000	<0.057	< 0.054	<0.1	<0.11	<0.1	<2.6	<0.11	0.088	<0.075	<0.048	<0.046	<0.054	<0.05	0.26 P	<0.14	<0.16	0.47
7421-93-4 Endrin	rin aldehyde	-	-	-	<0.057	<0.054	<0.1	<0.11	<0.1	<2.6	<0.11	0.15	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
58-89-9 gamma	ma-BHC (Lindane)	-	-	520	<0.057	<0.054	0.16 P	0.28	0.070 J P	<2.6	0.22 P	0.042 J P	<0.075	<0.048	<0.046	<0.054	<0.05	<0.11	<0.14	<0.16	<0.15
76-44-8 Heptac	tachlor	-	-	380	<0.057	< 0.054	<0.1	<0.11	<0.1	<2.6	<0.11	0.062 J	<0.075	<0.048	<0.046	<0.054	< 0.05	<0.11	<0.14	<0.16	<0.15
	tachlor epoxide	-	-	190	< 0.057	< 0.054	<0.1	<0.11	<0.1	<2.6	<0.11	< 0.064	< 0.075	<0.048	<0.046	< 0.054	< 0.05	0.076 J P	<0.14	<0.16	<0.15
	noxychlor	-	-	3,100,000	< 0.057	< 0.054	<0.21	<0.21	<0.21	<5.1	<0.22	0.057 J	2.2	0.047 J	< 0.046	< 0.054	< 0.05	<0.23	<0.27	<0.31	< 0.3
2385-85-5 Mirex	5	-	-	-	< 0.057	< 0.054	<0.1	<0.11	<0.1	<2.6	<0.11	< 0.064	< 0.075	<0.048	< 0.046	< 0.054	< 0.05	<0.11	<0.14	<0.16	<0.15
8001-35-2 Toxaph		-	-	1.600	<2.3	<2.2	<4.2	<4.3	<4.2	<100	<4.4	<2.6	<3	<1.9	<1.9	<2.1	<2	<4.6	<5.4	<6.3	<6

					1																
		SQuiRT	Guidelines	Weanack Exclusion									BOREHOLES	5							
Method/ CAS	Parameter/Lab Certificates	(Ocean	Disposal)	Criteria (Upland Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-017 80-90'	B-023 0-10'	B-023 28-38'	B-023 88-98'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
		ERL	ERM		18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0257	18A0118	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
SW8260B Vol	atiles (ug/kg)																				
	1,1,1,2-Tetrachloroethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 2.45	< 8.38	< 9.18	< 9.14
71-5-56	1,1,1-Trichloroethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
79-3-45	1,1,2,2-Tetrachloroethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 2.45	< 8.38	< 9.18	< 9.14
79-00-5 72-56-0	1,1,2-Trichloroethane 1,1-Dichloroethane	-	-	-	< 32.4 < 32.4	< 30.5 < 30.5	< 30.7 < 30.7	< 29.4 < 29.4	< 6.57 < 6.57	< 7.54 < 7.54	< 6.18 < 6.18	< 40.4 < 40.4	< 40.4 < 40.4	< 5.93 < 5.93	< 27.4 < 27.4	< 29.1 < 29.1	< 30.0 < 30.0	< 6.13 < 6.13	< 8.38 < 8.38	< 9.18 < 9.18	< 9.14 < 9.14
72-55-9	1,1-Dichloroethylene		-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
563-58-6	1,1-Dichloropropene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
87-61-6	1,2,3-Trichlorobenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
96-18-4	1,2,3-Trichloropropane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
120-82-1	1,2,4-Trichlorobenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
95-63-6	1,2,4-Trimethylbenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
106-93-4	1,2-Dibromoethane (EDB)	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
95-50-1	1,2-Dichlorobenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 3.07	< 8.38	< 9.18	< 9.14
1070-62	1,2-Dichloroethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
78-77-5 108-67-8	1,2-Dichloropropane 1,3.5-Trimethylbenzene		-	-	< 32.4 < 32.4	< 30.5 < 30.5	< 30.7 < 30.7	< 29.4 < 29.4	< 6.57 < 6.57	< 7.54 < 7.54	< 6.18 < 6.18	< 40.4 < 40.4	< 40.4 < 40.4	< 5.93 < 5.93	< 27.4 < 27.4	< 29.1 < 29.1	< 30.0 < 30.0	< 3.07 < 6.13	< 8.38 < 8.38	< 9.18 < 9.18	< 9.14 < 9.14
541-73-1	1,3-Dichlorobenzene		-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
142-28-9	1,3-Dichloropropane				< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
106-46-7	1,4-Dichlorobenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
594-20-7	2,2-Dichloropropane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
75-97-8	2-Butanone (MEK)	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 61.3	< 8.38	< 9.18	< 9.14
95-49-8	2-Chlorotoluene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
110-12-3	2-Hexanone (MBK)	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 30.7	< 8.38	< 9.18	< 9.14
	4-Chlorotoluene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
99-87-6	4-Isopropyltoluene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
10-81-01 67-64-1	4-Methyl-2-pentanone (MIBK)	-	-	-	< 32.4 < 64.7	< 30.5	< 30.7	< 29.4	< 6.57 15.3	< 7.54	< 6.18 31.2	< 40.4	< 40.4 203	< 5.93	< 27.4	< 29.1	< 30.0	< 30.7	< 8.38	< 9.18	< 9.14
71-43-2	Acetone Benzene	-	-	-	< 32.4	< 60.9 < 30.5	< 61.5 < 30.7	< 58.9 < 29.4	< 6.57	27.7 < 7.54	< 6.18	< 80.9 < 40.4	< 40.4	25.3 < 5.93	< 54.8 < 27.4	< 58.2 < 29.1	< 60.0 < 30.0	< 61.3 < 6.13	21.9 < 8.38	58 < 9.18	39 < 9.14
108-86-1	Bromobenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
74-97-5	Bromochloromethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	Bromodichloromethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 3.07	< 8.38	< 9.18	< 9.14
75-25-2	Bromoform	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
74-86-9	Bromomethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
75-15-0	Carbon disulfide	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 61.3	< 8.38	< 9.18	< 9.14
56-23-5	Carbon tetrachloride	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	Chlorobenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	Chloroethane Chloroform	-	-	-	< 32.4 < 32.4	< 30.5 < 30.5	< 30.7 < 30.7	< 29.4 < 29.4	< 6.57 < 6.57	< 7.54 < 7.54	< 6.18 < 6.18	< 40.4 < 40.4	< 40.4 < 40.4	< 5.93 < 5.93	< 27.4 < 27.4	< 29.1 < 29.1	< 30.0 < 30.0	< 6.13 < 3.07	< 8.38 < 8.38	< 9.18 < 9.18	< 9.14 < 9.14
74-87-3	Chloromethane		-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	cis-1,2-Dichloroethylene		-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	cis-1,3-Dichloropropene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	Dibromochloromethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 3.07	< 8.38	< 9.18	< 9.14
_	Dibromomethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
75-71-8	Dichlorodifluoromethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	Di-isopropyl ether (DIPE)	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 30.7	< 8.38	< 9.18	< 9.14
	Ethylbenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	Hexachlorobutadiene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 4.91	< 8.38	< 9.18	< 9.14
	lodomethane	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 61.3	< 8.38	< 9.18	< 9.14
	Isopropylbenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
	m+p-Xylenes	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 12.3	< 8.38	< 9.18	< 9.14
75-09-2	Methylene chloride	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 24.5	< 8.38	< 9.18	< 9.14

								5	EDIIVIEI												
M - 41 44		SQuiRT	Guidelines	Weanack Exclusion								I	BOREHOLES								
Method/ CAS	Parameter/Lab Certificates	(Ocean	Disposal)	Criteria (Upland Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-017 80-90'	B-023 0-10'	B-023 28-38'	B-023 88-98'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
		ERL	ERM		18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0257	18A0118	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
SW8260B Vo	latiles Contd (ug/kg)									•											
1634-04-4	Methyl-t-butyl ether (MTBE)	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
91-20-3	Naphthalene	160	2,100	230,000	75.4	67	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
104-51-8	n-Butylbenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
103-65-1 95-47-6	n-Propylbenzene o-Xylene	-	-	-	< 32.4 < 32.4	< 30.5 < 30.5	< 30.7 < 30.7	< 29.4 < 29.4	< 6.57 < 6.57	< 7.54 < 7.54	< 6.18 < 6.18	< 40.4 < 40.4	< 40.4 < 40.4	< 5.93 < 5.93	< 27.4 < 27.4	< 29.1 < 29.1	< 30.0 < 30.0	< 6.13 < 6.13	< 8.38 < 8.38	< 9.18 < 9.18	< 9.14 < 9.14
135-98-8	sec-Butylbenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
100-42-5	Styrene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
98-06-6	tert-Butylbenzene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
127-18-4	Tetrachloroethylene (PCE)	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
108-88-3	Toluene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
156-60-5	trans-1,2-Dichloroethylene	-	-	-	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
10061-02-6	trans-1,3-Dichloropropene	-	-	-	< 32.4	< 30.5	< 30.7 < 30.7	< 29.4	< 6.57	< 7.54	< 6.18 < 6.18	< 40.4 < 40.4	< 40.4 < 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 6.13	< 8.38	< 9.18	< 9.14
79-01-6 75-69-4	Trichloroethylene Trichlorofluoromethane	-	-	-	< 32.4 < 32.4	< 30.5 < 30.5	< 30.7	< 29.4 < 29.4	< 6.57 < 6.57	< 7.54 < 7.54	< 6.18	< 40.4 < 40.4	< 40.4 < 40.4	< 5.93 < 5.93	< 27.4 < 27.4	< 29.1 < 29.1	< 30.0 < 30.0	< 6.13 < 6.13	< 8.38 < 8.38	< 9.18 < 9.18	< 9.14 < 9.14
108-05-4	Vinyl acetate	-	-	-	< 64.7	< 60.9	< 61.5	< 58.9	< 13.1	< 15.1	< 12.4	< 80.9	< 80.9	< 11.9	< 54.8	< 58.2	< 60.0	< 61.3	< 16.8	< 18.4	< 18.3
75-01-4	Vinyl chloride	-	-	_	< 32.4	< 30.5	< 30.7	< 29.4	< 6.57	< 7.54	< 6.18	< 40.4	< 40.4	< 5.93	< 27.4	< 29.1	< 30.0	< 3.07	< 8.38	< 9.18	< 9.14
1330-20-7	Xylenes, Total	-	-	-	< 97.1	< 91.4	< 92.2	< 88.3	< 19.7	< 22.6	< 18.5	< 121	< 121	< 17.8	< 82.3	< 87.3	< 89.9	< 18.4	< 25.1	< 27.5	< 27.4
SW8270 Sem	i Volatiles (ug/kg)																				
120-82-1	1,2,4-Trichlorobenzene	-	-	400,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
95-50-1	1,2-Dichlorobenzene	-	-	10,000,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
122-66-7	1,2-Diphenylhydrazine	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
541-73-1 106-46-7	1,3-Dichlorobenzene 1,4-Dichlorobenzene	-	-	5,100,000 570.000	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104 < 104	< 118 < 118	< 99.5 < 99.5	< 144 < 144	< 151 < 151	< 95.5 < 95.5	< 90.8 < 90.8	< 89.7 < 89.7	< 103 < 103	< 109 < 109	< 140 < 140	< 152 < 152	< 153 < 153
90-12-0	1-Methylnaphthalene	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5 NT	< 144	< 151	< 95.5 NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
108-20-3	2.2'-Oxybis (1-chloropropane)	-	-	2,300,000	< 110	< 100	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
95-95-4	2,4,5-Trichlorophenol	-	-	62,000,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
88-06-2	2,4,6-Trichlorophenol	-	-	160,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
120-83-2	2,4-Dichlorophenol	-	-	1,800,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
105-67-9	2,4-Dimethylphenol	-	-	12,000,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
51-28-5	2,4-Dinitrophenol	-	-	1,200,000	< 110	< 106	< 101	< 96.3	< 104 < 104	< 118	< 99.5	< 144 < 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
121-14-2 606-20-3	2,4-Dinitrotoluene 2,6-Dinitrotoluene	-	-	1,200,000 620,000	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104	< 118 < 118	< 99.5 < 99.5	< 144	< 151 < 151	< 95.5 < 95.5	< 90.8 < 90.8	< 89.7 < 89.7	< 103 < 103	< 109 < 109	< 140 < 140	< 152 < 152	< 153 < 153
91-58-7	2-Chloronaphthalene	-	-	020,000	< 110	< 100	< 101	< 96.3	< 104	< 118	× 33.5 NT	< 144	< 151	× 95.5 NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
95-57-8	2-Chlorophenol	-	-	5,100,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
91-57-6	2-Methylnaphthalene	70	670	4,100,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
88-75-5	2-Nitrophenol	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
91-94-1	3,3'-Dichlorobenzidine	-	-	3,800	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
99-09-2	3-Nitroaniline	-	-	82,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
534-52-1 101-55-3	4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	-	-	0	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104 < 104	< 118 < 118	< 99.5 NT	< 144 < 144	< 151 < 151	< 95.5 NT	< 90.8 < 90.8	< 89.7 < 89.7	< 103 < 103	< 109 < 109	< 140 < 140	< 152 < 152	< 153 < 153
	4-Chloroaniline		-	230,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 83.3	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	4-Chlorophenyl phenyl ether	-	-	0	< 110	< 100	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	4-Nitroaniline	-	-	82,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	4-Nitrophenol	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	Acenaphthene	16	500	33,000,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	Acenaphthylene	44	640	0	< 110	< 106	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	Anthracene	85.3	1,100	170,000,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	Benzo (a) anthracene	261 430	1600 1600	2,100 660	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104 < 104	< 118 < 118	< 99.5 < 99.5	< 144 < 144	< 151 < 151	< 95.5 < 95.5	< 90.8 < 90.8	< 89.7 < 89.7	< 103 < 103	< 109 < 109	< 140 < 140	< 152 < 152	< 153 < 153
	Benzo (a) pyrene Benzo (b) fluoranthene	430	-	2,100	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5 < 95.5	< 90.8	< 89.7 < 89.7	< 103	< 109	< 140	< 152	< 153
	Benzo (g,h,i) perylene	-	-	0	< 110	< 100	< 101	< 96.3	< 104	< 118	< 99.5 NT	< 144	< 151	< 93.3 NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	Benzo (k) fluoranthene	-	-	21,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
	Benzoic acid	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
		•		-	-		-		-		•		-			-			-	-	

								5	EDIIVIEN												
Method/		SQuiRT	Guidelines	Weanack Exclusion Criteria									BOREHOLES								
CAS	Parameter/Lab Certificates	(Ocean	Disposal)	(Upland Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-017 80-90'	B-023 0-10'	B-023 28-38'	B-023 88-98'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
		ERL	ERM		18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0257	18A0118	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
SW8270 Sem	ni Volatiles contd (ug/kg)																				
	Benzyl alcohol	-	-	-	< 110	< 106	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
111-91-1	bis (2-Chloroethoxy) methane	-	-	1,800,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
<u>111-44-4</u> 117-81-7	bis (2-Chloroethyl) ether bis (2-Ethylhexyl) phthalate	-	-	900 120,000	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104 < 104	< 118 < 118	< 99.5 < 99.5	< 144 < 144	< 151 < 151	< 95.5 < 95.5	< 90.8 < 90.8	< 89.7 < 89.7	< 103 < 103	< 109 < 109	< 140 < 140	< 152 < 152	< 153 < 153
85-68-7	Butyl benzyl phthalate	-	-	1,100,000	< 110	< 100	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
218-01-9	Chrysene	384	2800	210,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
53-70-3	Dibenz (a,h) anthracene	63.4	260	660	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
132-64-9	Dibenzofuran	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	NT	< 144	< 151	NT	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
84-66-2	Diethyl phthalate	-	-	490,000,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
131-11-3	Dimethyl phthalate	-	-	10,000,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
84-74-2	Di-n-butyl phthalate	-	-	5,700,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
117-84-0 206-44-0	Di-n-octyl phthalate Fluoranthene	- 600	- 5100	1,100,000 22,000,000	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104 < 104	< 118 < 118	< 99.5 < 99.5	< 144 < 144	< 151 < 151	< 95.5 < 95.5	< 90.8 < 90.8	< 89.7 < 89.7	< 103 < 103	< 109 < 109	< 140 < 140	< 152 < 152	< 153 < 153
86-73-7	Fluorene	19	540	22,000,000	< 110	< 100	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
118-74-1	Hexachlorobenzene	-	-	1,100	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
87-68-3	Hexachlorobutadiene	-	-	22,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
77-47-4	Hexachlorocyclopentadiene	-	-	3,700,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
67-72-1	Hexachloroethane	-	-	120,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
193-39-5	Indeno (1,2,3-cd) pyrene	-	-	2,100	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
78-59-1	Isophorone	-	-	1,800,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
143-50-0	Kepone	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
76-60-8	m+p-Cresols	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103 < 103	< 109	< 140 < 140	< 152 < 152	< 153
91-20-3 98-95-3	Naphthalene Nitrobenzene	160	2,100	230,000 280,000	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104 < 104	< 118 < 118	< 99.5 < 99.5	< 144 < 144	< 151 < 151	< 95.5 < 95.5	< 90.8 < 90.8	< 89.7 < 89.7	< 103	< 109 < 109	< 140	< 152	< 153 < 153
62-75-9	n-Nitrosodimethylamine	-	-	200,000	< 110	< 100	< 101	< 96.3	< 104	< 118	< 99.3 NT	< 144	< 151	<u> </u>	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
621-64-7	n-Nitrosodi-n-propylamine	-	-	660	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
86-30-6	n-Nitrosodiphenylamine	-	-	350,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
76-60-8	o-Cresol	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
59-50-7	p-Chloro-m-cresol	-	-	0	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
87-86-5	Pentachlorophenol	-	-	9,000	< 110	< 106	< 101	< 96.3	< 104	< 118	< 99.5	< 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
85-01-8	Phenanthrene	240	1,500	0	< 110	< 106	< 101	< 96.3	< 104 < 104	< 118	NT	< 144 < 144	< 151	< 95.5	< 90.8	< 89.7	< 103	< 109	< 140	< 152	< 153
108-95-2 129-00-0	Phenol Pvrene	- 665	- 2.600	180,000,000 17.000.000	< 110 < 110	< 106 < 106	< 101 < 101	< 96.3 < 96.3	< 104	< 118 < 118	< 99.5 < 99.5	< 144	< 151 < 151	< 95.5 < 95.5	< 90.8 < 90.8	< 89.7 < 89.7	< 103 < 103	< 109 < 109	< 140 < 140	< 152 < 152	< 153 < 153
-	Sum LPAHs (ND=0)	552	3,160	-	0	0	0	< <u>90.5</u> 0	0	0	0	0	0	0	< <u>90.8</u> 0	0	0	0	0	0	0
-	Sum HPAHs (ND=0)	1,700	9,600	-	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	0	0
-	Sum PAHs (ND=0)	4,022	44,792	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum (n	ng/kg)										•										
-	TPH-Semi-Volatiles (DRO)	-	-	-	62	27.8	< 11.6	< 11.2	< 12.4	< 14.6	< 11.3	< 17.1	< 18.6	< 11.7	< 10.5	< 11.6	< 11.9	< 13.6	< 16.2	23.7	32.8
-	TPH-Volatiles (GRO)	-	-	-	<0.69	0.27	< 0.12	< 0.12	< 0.66	< 0.57	< 0.46	< 0.82	< 0.95	< 0.12	< 0.11	< 0.12	< 0.13	< 0.61	< 0.84	< 0.92	< 0.92
Wet Chemist	ry/Miscellaneous (mg/kg)	1	1	1 1		T	1		-	r	T				-	-	-		-		
-	Extractable Organic Halides (EOX)	-	-	-	< 14.1	< 13.2	< 12.3	< 12.3	< 13.2	< 15.1	< 12.4	< 17.6	< 18.9	< 11.9	16.6	< 11.9	< 12.6	< 13.9	< 16.8	< 18.5	< 18.4
	Ammonia as N	-	-	-	< 13.9	< 11.9	< 12.0	< 11.0	22	41.4	NT 11.00	91.5	447	NT	< 10.9	< 11.4	< 12.3	23.9	44.7	60.7	59.3
	Cyanide, Total Nitrate as N	-	-	20,000	< 1.39	< 1.31	< 1.21	< 1.19 < 2.45	< 1.29 < 2.63	< 1.34 < 3.02	< 1.22	< 1.70 < 3.53	< 1.85	< 1.13	< 1.09	< 1.16	< 1.24	< 1.37	< 1.67	< 1.81	< 1.80
14797-55-6		-	-	-	< 2.82 < 2.8	< 2.63 < 2.6	< 2.46 < 2.5	< 2.45	< 2.63	< 3.02	NT NT	< 3.55	< 3.78 < 3.8	NT NT	< 2.28 < 2.3	< 2.38 < 2.4	2.98 < 2.5	< 2.77 < 2.8	4.91 < 3.4	< 3.69 < 3.7	< 3.69 < 3.7
	Phosphorus (total)	-	-	-	19.7	43.6	< 2.5 67.1	33.8	50.7	222	NT	< 3.5 417	< 3.8 572	NT	33.7	16.6	18.8	< 2.0 194	292	398	< 3.7 346
	Paint Filter (<1 ml/100g)	-	-	-	< 1	< 1	< 1	< 1	2	< 1	< 1	<1	< 1	< 1	< 1	< 1	1	<1	< 1	< 1	< 1
-	Percent Solids	-	-	-	70.9	76.0	81.3	81.6	76	66.3	80.8	56.7	52.8	84.4	87.7	84.2	79.4	72.1	59.7	54.1	54.2
	pH (SU)	-	-	-	7.8	8.4	8.3	8.4	8.4	8.6	8.7	8.3	7.4	8.0	8.0	8.3	8.1	8.6	8.4	8.3	8.5
18496-25-8		-	-	-	1,670	700	< 466	< 423	1650	770	NT	1,360	< 739	NT	713	949	< 453	876	1,200	949	698
	TKN as N	-	-	-	161	222	< 61.5	71.8	162	422	NT	725	1230	NT	57.5	< 59.3	< 60.7	496	662	1,070	1,090
-	TOC (Min)	-	-	-	4,710	4,170	484	591	735	1,590	NT	3,480	827	NT	3,200	< 4280	586	10,800	3,530	2,380	3,340
-	TOC (Max)	-	-	-	8,600	7,890	572	680	784	1,640	NT	4,090	891	NT	3,700	6,230	649	12,100	3,930	2,850	3,900
-	TOC (Mean)	-	-	-	6,390	5,480	547	676	752	1,610	NT	3,900	869	NT	3,470	5,420	629	11,700	3,780	2,570	3,690
		-	-	-																	
Butyltins (ug	•							0.5									a = 1		(-		
77-58-7	· · ·	-	-	-	<4.2	<3.9	<3.6	<3.5	<3.9	<4.4	<2.9	<5.5	<2.9	<2.9	<3.4	<3.6	<3.7	<4.1	<4.9	<5.4	<5.5
	Monobutyltin	-	-	-	<4.2 <4.2	<3.9 <3.9	<3.6 <3.6	<3.5 <3.5	<3.9 <3.9	<4.4 <4.4	<2.9 <2.9	<5.5 <5.5	<2.9 <2.9	<2.9 <2.9	<3.4 <3.4	<3.6 <3.6	<3.7 <3.7	<4.1 <4.1	<4.9 <4.9	<5.4 <5.4	<5.5 <5.5
36643-28-4	THORYNIII	-	-	-	<u><u></u>~4.∠</u>	~ 3.9	~3.0	NJ.D	~3.9	<u>\4.4</u>	~2.9	>0.5	~2.9	~2.9	~ 3.4	~3.0	\ 3.1	\4.	~4.9	N0.4	\ 0.0

								5		· ·											
		SQuiRT	Guidelines	Weanack Exclusion								I	BOREHOLES								
Method/ CAS	Parameter/Lab Certificates	(Ocean	Disposal)	Criteria (Upland Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-017 80-90'	B-023 0-10'	B-023 28-38'	B-023 88-98'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
	-	ERL	ERM		18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0257	18A0118	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Dioxins and F	Furans (ng/kg)																				
1746-01-6 2		-	-	18	0.0313 JB	0.0447 JBQ	<0.0440	0.0934 JQ	0.0722 JBQ	0.223 JQ	0.390 J	0.193 JQ	0.169 JQ	<0.0256	<0.0161	0.0191 JBQ	0.0438 JQ	0.194 JBQ	0.316 JBQ	0.732 JB	0.692 JBQ
40321-76-4 1		-	-	-		0.456 JQ				1.72 JBQ	NT	1.57 JB	1.14 JB	NT		0.0959 JQ	0.203 J	1.40 J	2.72 JB	3.20 JB	2.90 JBQ
	123478-HxCDD	-	-	-	0.223 JB			0.246 JQ	0.641 JB	2.51 J	NT	2.27 J	1.78 J	NT				2.01 JB	4.21 JB	3.40 JB	3.14 JB
	123678-HxCDD	-	-	-	0.345 JB			0.288 JBQ		3.62 JB	NT	3.30 JB	2.59 JB	NT	0.0503 JBQ			2.89 JB	6.25 JB	5.41 JB	5.57 JB
	123789-HxCDD	-	-	-	0.496 JBQ	1.31 JB		0.675 JBQ		6.14 JB	NT	5.83 JB	4.47 JB		0.0731 JBQ			4.66 JB	9.94 B	7.20 JB	7.67 JB
	1234678-HpCDD	-	-	-	7.83 B	19.1 B	11.2 B		27.9 B	71.8 B	NT	85.5 B	65.6 B	NT	0.952 JB		3.12 JB	58.8 B	134 B	88.5 B	106 B
3268-87-9	OCDD	-	-	-	123 B	283 B	891 B	153 B	355 B	788 B	NT	1,110 B	762 B	NT	12.9 B	42.3 B	34.3 B	582 B	1,670 B	886 B	1,190 B
54007.04.0.(-	-	-	0.0075 ID	0.450 15		.0.0000	-0.0054	.0.0000	NT			NIT							4 44 10 40
51207-31-9 2						0.156 JB		< 0.0300	<0.0251	< 0.0633	NT	0.0531 JBQ		NT					0.134 JBQ		1.69 JBCQ
57117-41-6 1	12376-PeCDF	-	-	-	0.133 JBQ	0.195 JB	0.110 JBQ	<0.0218	0.139 JBQ	0.0904 JQ	NT	0.125 JQ	0.176 JQ	NT	0.117 JBQ	0.0902 JBQ	0.170 JBQ	0.179 JBQ	0.226 JB	2.66 JB	1.63 JB
57117-31-4 2	23478-PeCDE	-	-	-	0.0727 IBO	0.177 IB	0.0640 IBO	0.0271 JBQ	0.163 IR	0.0990 JQ	NT	0.113 JQ	0.0664 J	NT	0.0739 JBQ	0.0950 IBO	0.0886 IBO	0.123 IBO	0.102 180	2.42 JB	1.75 JB
	123478-HxCDF	-	-	-		0.143 JBQ			0.183 JB 0.235 JB	<0.0559	NT		0.0864 J 0.0705 JQ		0.0739 JBQ 0.0481 JBQ			0.125 JBQ 0.106 JBQ		1.92 JB	1.75 JB 1.28 JB
	123678-HxCDF		-	-		0.143 JBQ			0.235 JB 0.244 JB	<0.0539	NT	0.120 J	0.0856 JB	NT	0.0494 JBQ						1.20 JB
	123789-HxCDF		-	-				0.0848 JBQ			NT		0.124 JBQ		0.0740 JBQ					0.619 JB	0.475 JB
	234678-HxCDF		-	-				0.0623 JBQ		0.101 JBQ	NT	0.0865 JBQ	0.0580 JB		0.0475 JBQ					1.64 JB	1.30 JB
	1234678-HpCDF		-	-		0.469 JB	0.170 J	0.156 J		0.421 JBQ	NT	0.412 JB	0.364 JB	NT	0.119 JBQ					4.27 JB	4.40 JB
		_	-	_																	
	1234789-HpCDF				0.0691 JBQ		0.0933 JQ		0.389 JB	< 0.0856	NT	0.0981 JBQ		NT	0.0326 JBQ	<0.0213	0.0936 JBQ			0.678 JB	0.604 JB
39001-02-0		-	-	-		0.779 JBQ			7.64 JB	0.876 JB	NT	0.721 JB	0.703 JB	NT		0.381 JB		0.225 JBQ	4.40 JB	7.68 JB	8.12 JB
	Toxic Equivalency Quotient (TEQ) ("<"=0)	-	-	-	0.412	1.17	0.66	0.38	1.41	4.19	NT	4.18	3.15	NT	0.16	0.256	0.45	3.40	7.12	8.42	7.88
	Detection)	-	-	-	0.412	1.17	0.68	0.42	1.41	4.20	NT	4.18	3.15	NT	0.15	0.256	0.45	3.40	7.12	8.42	7.88
	Toxic Equivalency Quotient (TEQ) ("<"=Detection)	-	-	-	0.412	1.17	0.702	0.465	1.413	4.207	NT	4.183	3.151	NT	0.14	0.256	0.449	3.40	7.122	8.419	7.877
PCB Congene 34883-43-7		-	[3.78 J	<2.04	<1.98	<1.83	<1.88	<2.10	NT	<2.22	<2.98	NT	<1.69	3.05 J	<1.74	<2.01	<2.43	11	13.6
	PCB18+30	-	-	-	2.60 J	4.36 J	<2.11	<1.85	<2.01	<2.10	NT	<2.37	<3.17	NT	<1.80	<1.87	<1.86	<2.01	<2.43	4.21 J	5.42 J
	PCB20+28	-	-	-	9.44	<2.99	<2.11	<2.68	<2.01	<3.08	NT	<3.26	<4.37	NT	<2.47	6.91	<2.56	<2.95	<3.56	10.2	13.7
35693-99-3 F			-	-	9.11	8.21	4.72 J	2.33 J	<1.88	<2.10	NT	<2.22	<2.98	NT	<1.69	5.59 J	<1.74	<2.01	2.61 J	18.3	33.4
	PCB49+69	-	-	-	6.94 J	<3.53	<3.44	<3.17	<3.26	<3.64	NT	<3.85	<5.16	NT	<2.92	4.59 J	<3.02	<3.49	<4.21	18.1 J	28
	PCB44+47+65	-	-	-	8.93 J	8.37 J	<5.29	<4.87	5.48 JB	5.90 JB	NT	<5.93	<7.94	NT	<4.50	5.16 J	<4.65	<5.37	<6.47	20.2 B	32.9 B
32598-10-0 F		-	-	-	9.35	10.4	2.78 J	<2.07	<2.13	<2.38	NT	<2.52	<3.37	NT	<1.91	5.31 J	<1.97	<2.28	<2.75	<3.20	<2.98
	PCB90+101+113	-	-	-	19.0 J	10.8 J	7.18 J	<5.73	<5.90	<6.58	NT	<6.96	<9.33	NT	<5.29	<5.48	<5.46	<6.30	<7.60	<8.85	46.1
	PCB86+87+97+109+119+125	-	-	-	9.92 J	<10.0	13.2 J	<9.02	<9.28	<10.4	NT	<11.0	<14.7	NT	<8.32	<8.63	<8.59	<9.93	<12.0	<13.9	19.7 J
70362-49-1 F	PCB77	-	-	-	<1.68	<1.90	<1.85	<1.71	<1.76	<1.96	NT	<2.07	<2.78	NT	<1.57	<1.63	<1.63	<1.88	<2.27	<2.64	<2.45
31508-00-6 F	PCB118	-	-	-	16.5	10.4 J	6.30 J	<3.66	<3.76	<4.20	NT	<4.45	<5.95	NT	<3.37	7.08 J	<3.48	<4.02	<4.85	21.6	33.4
00500 11 1						2 7 0 1	<2.25	.0.07	<2.13	<2.38	NT	<2.52	<3.37	NT	<1.91	<1.98	<1.97	<2.28	<2.75	<3.20	5.29 J
32598-14-4 F		-	-	-	5.28 J	3.70 J	<z.25< td=""><td><2.07</td><td>~2.13</td><td>2.00</td><td></td><td>· L.OL</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></z.25<>	<2.07	~2.13	2.00		· L.OL	0.01								
32598-14-4 F 74472-48-3 F		-	-	-	<1.68	3.70 J <1.90	<2.25 <1.85	<1.71	<1.76	<1.96	NT	<2.02	<2.78	NT	<1.57	<1.63	<1.63	<1.88	<2.27	<2.64	<2.45
74472-48-3 F - F	PCB184 PCB153+168				<1.68 29.8	<1.90 <4.07	<1.85 5.11 J	<1.71 <3.66	<1.76 4.42 J	<1.96 <4.20	NT NT	<2.07 <4.45	<2.78 <5.95	NT	<3.37	10.8 J	<3.48	<4.02	<4.85	39.3	60.6
74472-48-3 F - F - F	PCB184 PCB153+168 PCB129+138+163	-	-	-	<1.68 29.8 27.4	<1.90 <4.07 12.4 J	<1.85 5.11 J <8.33	<1.71 <3.66 <7.68	<1.76 4.42 J <7.90	<1.96 <4.20 <8.81	NT NT NT	<2.07 <4.45 <9.34	<2.78 <5.95 <12.5	NT NT	<3.37 <7.09	10.8 J 8.48 J	<3.48 <7.32	<4.02 <8.45	<4.85 <10.2	39.3 24.0 J	60.6 46.8
74472-48-3 F - F 57465-28-8 F	PCB184 PCB153+168 PCB129+138+163 PCB126	-	-	-	<1.68 29.8 27.4 <1.92	<1.90 <4.07 12.4 J <2.17	<1.85 5.11 J <8.33 <2.11	<1.71 <3.66 <7.68 <1.95	<1.76 4.42 J <7.90 <2.01	<1.96 <4.20 <8.81 <2.24	NT NT NT NT	<2.07 <4.45 <9.34 <2.37	<2.78 <5.95 <12.5 <3.17	NT NT NT	<3.37 <7.09 <1.80	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86	<4.02 <8.45 <2.15	<4.85 <10.2 <2.59	39.3 24.0 J <3.01	60.6 46.8 <2.80
74472-48-3 F - F - F 57465-28-8 F - F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166	-	- - - - -	-	<1.68 29.8 27.4 <1.92 <3.49	<1.90 <4.07 12.4 J <2.17 <3.94	<1.85 5.11 J <8.33 <2.11 <3.83	<1.71 <3.66 <7.68 <1.95 <3.53	<1.76 4.42 J <7.90 <2.01 <3.64	<1.96 <4.20 <8.81 <2.24 <4.06	NT NT NT NT NT	<2.07 <4.45 <9.34 <2.37 <4.30	<2.78 <5.95 <12.5 <3.17 <5.75	NT NT NT NT	<3.37 <7.09 <1.80 <3.26	10.8 J 8.48 J <1.87 <3.38	<3.48 <7.32 <1.86 <3.37	<4.02 <8.45 <2.15 <3.89	<4.85 <10.2 <2.59 <4.69	39.3 24.0 J <3.01 <5.46	60.6 46.8 <2.80 <5.08
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187	- - - - - -	- - - - -	- - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25	<1.71 <3.66 <7.68 <1.95 <3.53 <2.07	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38	NT NT NT NT NT NT	<2.07 <4.45 <9.34 <2.37 <4.30 <2.52	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37	NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91	10.8 J 8.48 J <1.87 <3.38 4.30 J	<3.48 <7.32 <1.86 <3.37 <1.97	<4.02 <8.45 <2.15 <3.89 <2.28	<4.85 <10.2 <2.59 <4.69 <2.75	39.3 24.0 J <3.01 <5.46 <3.20	60.6 46.8 <2.80 <5.08 <2.98
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185	- - - - - - - -	- - - - - -	- - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70	<1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92	NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15</pre>	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56	NT NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53	39.3 24.0 J <3.01 <5.46 <3.20 <5.27	60.6 46.8 <2.80 <5.08 <2.98 <4.91
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F - F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185 PCB156+157	- - - - - - - - -	- - - - - - -	- - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04	<pre><1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80</pre>	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51 <2.89	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92 <3.22	NT NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41</pre>	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56	NT NT NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J
74472-48-3 F - F 57465-28-8 F 52663-68-0 F - F - F - F - F - F - F - F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185 PCB156+157 PCB180+193	- - - - - - - - - -	- - - - - - - - -	- - - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77 13.9	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12 7.23 J	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04 <3.97	<pre><1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80 <3.66</pre>	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51 <2.89 <3.76	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92 <3.22 <4.20	NT NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41 <4.45</pre>	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56 <5.95	NT NT NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59 <3.37	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67 <3.48	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09 <4.02	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72 <4.85	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33 <5.65	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J <5.26
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F - F 35065-30-6 F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185 PCB156+157 PCB180+193 PCB170	- - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77 13.9 6.17	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12 7.23 J 4.16 J	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04 <3.97 <1.59	<1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80 <3.66 <1.46	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <2.89 <3.76 <1.51	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92 <3.22 <4.20 <1.68	NT NT NT NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41 <4.45 <1.78</pre>	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56 <5.95 <2.38	NT NT NT NT NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59 <3.37 <1.35	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67 <3.48 <1.39	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09 <4.02 <1.61	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72 <4.85 <1.94	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33 <5.65 7.07 J	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J <5.26 11.6
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F - F 35065-30-6 F 32774-16-6 F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185 PCB183+185 PCB166+157 PCB180+193 PCB170 PCB169	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77 13.9 6.17 <1.80	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12 7.23 J 4.16 J <2.04	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04 <3.97 <1.59 <1.98	<1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80 <3.66 <1.46 <1.83	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51 <2.89 <3.76 <1.51 <1.88	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92 <3.22 <4.20 <1.68 <2.10	NT NT NT NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41 <4.45 <1.78 <2.22</pre>	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56 <5.95 <2.38 <2.98	NT NT NT NT NT NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59 <3.37 <1.35 <1.69	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67 <3.48 <1.39 <1.74	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09 <4.02 <1.61 <2.01	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72 <4.85 <1.94 <2.43	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33 <5.65 7.07 J <2.83	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J <5.26 11.6 <2.63
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F - F 35065-30-6 F 32774-16-6 F 52663-78-2 F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185 PCB186+157 PCB180+193 PCB195 PCB195	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77 13.9 6.17 <1.80 <2.64	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12 7.23 J 4.16 J <2.04 <2.99	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04 <3.97 <1.59 <1.98 <2.91	<pre><1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80 <3.66 <1.46 <1.83 <2.68</pre>	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51 <2.89 <3.76 <1.51 <1.88 <2.76	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92 <3.22 <4.20 <1.68 <2.10 <3.08	NT NT NT NT NT NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41 <4.45 <1.78 <2.22 <3.26</pre>	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56 <5.95 <2.38 <2.98 <4.37	NT NT NT NT NT NT NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59 <3.37 <1.35 <1.69 <2.47	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67 <3.48 <1.39 <1.74 <2.56	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09 <4.02 <1.61 <2.01 <2.95	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72 <4.85 <1.94 <2.43 <3.56	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33 <5.65 7.07 J <2.83 <4.14	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J <5.26 11.6 <2.63 <3.86
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F - F 35065-30-6 F 32774-16-6 F 52663-78-2 F 40186-72-9 F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185 PCB156+157 PCB180+193 PCB169 PCB195 PCB206	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77 13.9 6.17 <1.80 <2.64 3.00 J	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12 7.23 J 4.16 J <2.04 <2.99 4.96 J	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04 <3.97 <1.59 <1.98 <2.91 <2.11	<pre><1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80 <3.66 <1.83 <2.68 <1.95</pre>	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51 <2.89 <3.76 <1.51 <1.88 <2.76 <2.01	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92 <4.20 <1.68 <2.10 <3.08 <2.24	NT NT NT NT NT NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41 <4.45 <1.78 <2.22 <3.26 <2.37</pre>	<pre><2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56 <5.95 <2.38 <2.98 <4.37 <3.17</pre>	NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59 <3.37 <1.35 <1.69 <2.47 <1.80	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67 <3.48 <1.39 <1.74 <2.56 <1.86	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09 <4.02 <1.61 <2.01 <2.95 <2.15	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72 <4.85 <1.94 <2.43 <3.56 <2.59	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33 <5.65 7.07 J <2.83 <4.14 3.03 J	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J <5.26 11.6 <2.63 <3.86 4.56 J
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F - F 35065-30-6 F 32774-16-6 F 52663-78-2 F 40186-72-9 F 2051-24-3 F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB188+185 PCB156+157 PCB180+193 PCB170 PCB195 PCB206 PCB209	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77 13.9 6.17 <1.80 <2.64 3.00 J 6.17	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12 7.23 J 4.16 J <2.04 <2.99 4.96 J 4.11 J	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04 <3.97 <1.59 <1.98 <2.91 <2.11 28.9 B	<1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80 <3.66 <1.46 <1.83 <2.68 <1.95 3.44 JB	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51 <2.89 <3.76 <1.51 <1.88 <2.76 <2.01 5.43 JB	<1.96	NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41 <4.45 <1.78 <2.22 <3.26 <2.37 3.31 JB</pre>	<2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56 <5.95 <2.38 <2.98 <4.37 <3.17 4.12 JB	NT NT NT NT NT NT NT NT NT NT NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59 <3.37 <1.35 <1.69 <2.47 <1.80 <1.80	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67 <3.48 <1.39 <1.74 <2.56 <1.86 2.92 JB	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09 <4.02 <1.61 <2.01 <2.95 <2.15 5.76 JB	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72 <4.85 <1.94 <2.43 <3.56 <2.59 3.86 JB	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33 <5.65 7.07 J <2.83 <4.14 3.03 J 10.8 B	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J <5.26 11.6 <2.63 <3.86 4.56 J 14.1 B
74472-48-3 F - F 57465-28-8 F - F 52663-68-0 F - F - F 35065-30-6 F 32774-16-6 F 52663-78-2 F 40186-72-9 F 2051-24-3 F	PCB184 PCB153+168 PCB129+138+163 PCB126 PCB128+166 PCB187 PCB183+185 PCB156+157 PCB180+193 PCB169 PCB195 PCB206	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<1.68 29.8 27.4 <1.92 <3.49 12.4 5.56 J <2.77 13.9 6.17 <1.80 <2.64 3.00 J	<1.90 <4.07 12.4 J <2.17 <3.94 <2.31 <3.80 <3.12 7.23 J 4.16 J <2.04 <2.99 4.96 J	<1.85 5.11 J <8.33 <2.11 <3.83 <2.25 <3.70 <3.04 <3.97 <1.59 <1.98 <2.91 <2.11	<pre><1.71 <3.66 <7.68 <1.95 <3.53 <2.07 <3.41 <2.80 <3.66 <1.83 <2.68 <1.95</pre>	<1.76 4.42 J <7.90 <2.01 <3.64 3.61 J <3.51 <2.89 <3.76 <1.51 <1.88 <2.76 <2.01	<1.96 <4.20 <8.81 <2.24 <4.06 <2.38 <3.92 <4.20 <1.68 <2.10 <3.08 <2.24	NT NT NT NT NT NT NT NT NT NT NT NT	<pre><2.07 <4.45 <9.34 <2.37 <4.30 <2.52 <4.15 <3.41 <4.45 <1.78 <2.22 <3.26 <2.37</pre>	<pre><2.78 <5.95 <12.5 <3.17 <5.75 <3.37 <5.56 <4.56 <5.95 <2.38 <2.98 <4.37 <3.17</pre>	NT NT	<3.37 <7.09 <1.80 <3.26 <1.91 <3.15 <2.59 <3.37 <1.35 <1.69 <2.47 <1.80	10.8 J 8.48 J <1.87	<3.48 <7.32 <1.86 <3.37 <1.97 <3.25 <2.67 <3.48 <1.39 <1.74 <2.56 <1.86	<4.02 <8.45 <2.15 <3.89 <2.28 <3.76 <3.09 <4.02 <1.61 <2.01 <2.95 <2.15	<4.85 <10.2 <2.59 <4.69 <2.75 <4.53 <3.72 <4.85 <1.94 <2.43 <3.56 <2.59	39.3 24.0 J <3.01 <5.46 <3.20 <5.27 <4.33 <5.65 7.07 J <2.83 <4.14 3.03 J	60.6 46.8 <2.80 <5.08 <2.98 <4.91 4.83 J <5.26 11.6 <2.63 <3.86 4.56 J

Method/			Guidelines	Weanack Exclusion Criteria									BOREHOLES								
CAS	Parameter/Lab Certificates	(Ocean	Disposal)	(Upland Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-017 80-90'	B-023 0-10'	B-023 28-38'	B-023 88-98'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
		ERL	ERM		18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0257	18A0118	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Grain size (%) USCS							-					-								
-	Gravel (-3" and +#4)	-	-	-	0.0	0	0.0	0.4	1.4	0.0	1.1	24.8	6.2	0.0	42.9	11.0	0.0	0.6	7.5	0.2	0.0
-	Sand (-#4 and +#200)	-	-	-	96.3	82.7	92.2	94.6	88.3	51.2	50.0	66.8	15.7	25.7	54.6	85.6	91.9	29.0	15.1	25.9	21.1
-	Fines (-#200)	-	-	-	3.7	17.2	7.8	5.1	10.3	48.8	48.9	8.4	78.2	74.3	2.4	3.5	8.1	70.3	77.4	73.9	78.9
Agricultural	Data																				
-	PPA (tons CaCO ₃ /1000 tons materials)	-	-	-	1.28	0	6.01	0.00	0.00	1.12	5.99	4.38	1.59	0.00	0.00	0.00	0.00	0.00	11.39	4.88	NT
-	% Total Sulfur	-	-	-	0.03	0.14	0.04	0.09	0.1	0.42	0.67	0.7	0.41	0.00	<0.01	0.01	0.01	0.01	0.94	0.97	NT
-	Sobek NP (tons CaCO3Eq/1000 tons materials)	-	-	-	0.3	8.08	3.82	45.42	46.45	11.00	11.98	15.37	8.33	251.88	7.08	17.42	177	179	13.28	19.99	NT

Shaded Detection Exceeds Criteria Shaded Reporting Limit Exceeds Criteria NT-Not Tested Bold-Detected-Non J and J Values ERL-Effects Range Low ERM-Effects Range Median

Laboratory Flags

B Detected in Method Blank

J Estimated concentration between Method Detection Limit and Minimum Reporting Level

P-Duplicate analysis does not meet the acceptance criteria for precision

Q EMPC - Estimated Maximum Possible Concentration

										BOREHOLES	3						
Method/CAS	Parameter/Lab Certificates	SQuiRT (Surface Water, Marine, Acute- Ocean Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-023 0-10'	B-023 28-38'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
	Lab Certificate Number	er	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Total Recoveral Metals (mg/	1)			-			-			-					-		
	Aluminum	-	4.35	6.54	5.8	6.53	1.45	0.714	1.38	5.26	5.92	3.40	14.6	0.670	2.89	0.828	0.998
	Antimony	-	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
7440-38-2	Arsenic	0.069	< 0.0200	0.0246	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	0.0272	< 0.0200	< 0.0200
	Beryllium	-	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
	Cadmium	0.040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
7440-47-3	Chromium	1.1	0.0116	< 0.0100	< 0.0100	0.0105	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0156	0.0130	0.0371	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7440-48-4	Cobalt	-	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
7440-50-8	Copper	0.0048	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0182	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7439-89-6	Iron	-	6.25	6.04	6.18	5.68	3.04	1.03	1.51	4.73	10.5	6.31	21.2	0.848	1.87	1.35	1.85
7439-92-1	Lead	0.21	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0127	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7439-96-5	Manganese	-	0.0727	0.0689	0.0288	0.0597	0.153	0.0458	0.286	0.247	0.200	0.0913	0.189	0.0813	0.0408	0.103	0.118
7439-97-6	Mercury	0.0018	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0	Nickel	0.074	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0128	< 0.0100	< 0.0100	< 0.0100	< 0.0100
	Selenium	0.290	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
7440-22-4	Silver	0.00095	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7440-28-0	Thallium	2.13	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
7440-31-5	Tin	-	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200
	Zinc	0.090	0.0311	0.0182	< 0.0100	0.0112	< 0.0100	< 0.0100	< 0.0100	0.0122	0.0404	0.0298	0.0486	< 0.0100	< 0.0100	0.0102	0.0120
Simultaneous Extracted Met	tals (umoles/g)																
7440-43-9	Cadmium	-	<0.000116	<0.000119	0.000156 J	0.000251 J	0.000185 J	<0.000117	<0.000118	<0.000117	<0.000118	<0.000118	<0.000117	<0.000119	0.000132 J	<0.000118	<0.000118
7440-50-8	Copper	-	0.00240 J	0.00589 J	<0.000931	0.0483	0.0381	0.00246 J	0.00210 J	0.00112 J	0.000943 J	0.00624 J	0.00110 J	0.00609 J	0.0105	0.00604 J	0.00228 J
7439-92-1	Lead	-	<0.000700	<0.000715	<0.000714	<0.000704	<0.000710	< 0.000703	<0.000710	<0.000707	<0.000709	<0.000712	0.000837 J	<0.000720	<0.000714	<0.000714	< 0.000712
7440-02-0	Nickel	-	0.000708 J	0.120	0.00235 J	0.561	0.333	0.00148 J	0.00247 J	0.000627 J	0.00102 J	0.102	0.00121 J	0.104	0.139	0.000647 J	0.00121 J
7440-66-6	Zinc	-	0.00181 J	0.00108 J	0.00246 J	0.00252 J	0.00176 J	0.00225 J	0.00568 J	0.00217 J	0.00118 J	0.00140 J	0.00217 J	0.00167 J	0.00355 J	0.00218 J	0.00741 J
7439-97-6	Mercury	-	0.0000086 J	< 0.0000074	< 0.000074	< 0.000073	< 0.0000073	0.000012 J	< 0.0000073	< 0.000073	< 0.000073	<0.0000074	< 0.000073	0.000028 J	< 0.0000074	0.000029 J	< 0.0000074
-	Acid Volatile Sulfide	-	<0.63	<0.63	<0.63	<0.63	<0.63	< 0.63	<0.63	<0.63	<0.63	<0.63	<0.63	<0.63	<0.63	<0.63	< 0.63
-	SEM-Ratio	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

										BOREHOLES	6						
Method/CAS	Parameter/Lab Certificates	SQuiRT (Surface Water, Marine, Acute- Ocean Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-023 0-10'	B-023 28-38'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
	Lab Certificate Nun	nber	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Pesticides (ug/l)		- T T		1		r	T	1	r	T	,		1	F		1	
86-50-0	Azinphos-methyl	-	< 0.204	< 0.200	< 0.208	< 0.208	< 0.208	< 0.206	< 0.206	< 0.206	< 0.200	< 0.204	< 0.208	< 0.211	< 0.200	< 0.217	< 0.213
125-75-0	Demeton, o+s	-	< 0.408	< 0.400	< 0.417	< 0.417	< 0.417	< 0.412	< 0.412	< 0.412	< 0.400	< 0.408	< 0.417	< 0.421	< 0.400	< 0.435	< 0.426
56-38-2	Ethyl Parathion	-	< 0.204	< 0.200	< 0.208	< 0.208	< 0.208	< 0.206	< 0.206	< 0.206	< 0.200	< 0.204	< 0.208	< 0.211	< 0.200	< 0.217	< 0.213
121-75-5	Malathion	-	< 0.204	< 0.200	< 0.208	< 0.208	< 0.208	< 0.206	< 0.206	< 0.206	< 0.200	< 0.204	< 0.208	< 0.211	< 0.200	< 0.217	< 0.213
56-38-2	Methyl parathion	-	< 0.204 <0.0013	< 0.200 <0.0013	< 0.208 <0.0013	< 0.208 <0.0013	< 0.208 <0.0013	< 0.206 <0.0013	< 0.206 <0.0013	< 0.206 <0.0013	< 0.200 <0.0013	< 0.204 <0.0013	< 0.208 <0.0013	< 0.211 <0.0013	< 0.200 <0.0014	< 0.217 <0.0013	< 0.213 <0.0013
53-19-0 3424-82-6	2,4'-DDD 2,4'-DDE	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.00013	< 0.0013	<0.0013	<0.0013	<0.0013	< 0.0014	<0.0013	<0.0013
	2,4-DDE 2,4'-DDT	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.0013	0.0004 JP	0.00013	<0.0013	<0.0013	<0.0013	< 0.0014	<0.0013	<0.0013
789-02-6 72-54-8	4,4'-DDD	3.6	<0.0013	<0.0013	0.00013	0.00013	0.00066 J	0.00013	<0.0013	<0.0013	< 0.0013	<0.0013	0.00051 J	<0.0013	0.00014 0.00044 J	<0.0013	0.00064 J
72-54-8	4,4'-DDD 4,4'-DDE	14	<0.0013	<0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	< 0.0013	<0.0013	< 0.0013	<0.0013	< 0.0014	<0.0013	<0.0013
50-29-3	4,4'-DDE 4,4'-DDT	0.065	<0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	< 0.0013	<0.0013	<0.0013	< 0.0013	< 0.0014	< 0.0013	< 0.0013
309-00-2	Aldrin	0.65	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	< 0.0014	<0.0013	<0.0013
319-84-6	alpha-BHC	0.08	<0.0013	<0.0013	0.0013	0.0013	0.0012 JP	0.00031 JP	<0.0013	0.0013	< 0.0013	<0.0013	0.0012 JP	0.0011 JP	< 0.0014	0.0019 P	<0.0013
319-85-7	beta-BHC	0.08	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	< 0.0014	< 0.0013	< 0.0013
57-74-9	Chlordane (technical)	0.045	<0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	<0.013
103-17-3	Chlorobenside	-	< 0.0032	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0033	< 0.0032	< 0.0034	< 0.0033	< 0.0033
1861-32-1	DCPA	_	< 0.0025	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0026	< 0.0025	< 0.0027	< 0.0026	< 0.0026
319-86-8	delta-BHC	-	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0014	< 0.0013	< 0.0013
60-57-1	Dieldrin	0.355	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0014	< 0.0013	< 0.0013
959-98-8	Endosulfan I	0.017	<0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	< 0.0013	0.00016 JP	< 0.0013	< 0.0013
33213-65-9	Endosulfan II	0.017	<0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	< 0.0013	<0.0014	< 0.0013	< 0.0013
1031-07-8	Endosulfan sulfate	-	<0.0013	< 0.0013	<0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	< 0.0013	<0.0013
72-20-8	Endrin	0.0185	<0.0013	<0.0013	<0.0013	<0.0013	< 0.0013	<0.0013	<0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0013	< 0.0013
7421-93-4	Endrin aldehyde	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.00041 JP	0.0012 JP	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0013	< 0.0013
58-89-9	gamma-BHC (Lindane)	0.08	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.00031 JP	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0013	< 0.0013
76-44-8	Heptachlor	0.0265	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0013	<0.0013
1024-57-3	Heptachlor epoxide	0.0265	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0013	<0.0013
72-43-5	Methoxychlor	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0013	<0.0013
2385-85-5	Mirex	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0013	<0.0013
8001-35-2	Toxaphene	0.21	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.11	<0.10	<0.10
Semivolatiles 8270 (ug/l)					1		1						I				
87-61-6	1,2,4-Trichlorobenzene	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
122-66-7	1,2-Diphenylhydrazine	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
90-12-0 108-60-1	1-Methylnaphthalene	-	< 10.5 < 10.5	< 10.8 < 10.8	< 10.4 < 10.4	< 10.3 < 10.3	< 10.3 < 10.3	< 10.4 < 10.4	< 10.3 < 10.3	< 10.3 < 10.3	< 10.2 < 10.2	< 10.3 < 10.3	< 10.4 < 10.4	< 10.3 < 10.3	< 11.0	< 10.0 < 10.0	< 10.5 < 10.5
95-95-4	2,2'-Oxybis (1-chloropropane) 2,4,6-Trichlorophenol	-	< 10.5	< 10.8			< 10.3		< 10.3	< 10.3	< 10.2			< 10.3	< 11.0 < 11.0	< 10.0	< 10.5
120-83-2	2,4,0- Inchlorophenol		< 10.5	< 10.8	< 10.4 < 10.4	< 10.3 < 10.3	< 10.3	< 10.4 < 10.4	< 10.3	< 10.3	< 10.2	< 10.3 < 10.3	< 10.4 < 10.4	< 10.3	< 11.0	< 10.0	< 10.5
105-67-9	2,4-Dimethylphenol	-	< 0.53	< 0.54	< 0.52	< 0.52	< 0.52	< 0.52	< 0.52	< 0.52	< 0.51	< 0.52	< 0.52	< 0.52	< 0.55	< 0.50	< 0.53
51-28-5	2,4-Dinitrophenol		< 52.6	< 53.8	< 52.1	< 51.5	< 51.5	< 52.1	< 51.5	< 51.5	< 51.0	< 51.5	< 52.1	< 51.5	< 54.9	< 50.0	< 52.6
606-20-2	2,6-Dinitrotoluene	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
91-58-7	2-Chloronaphthalene		< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
95-57-8	2-Chlorophenol		< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
91-57-6	2-Methylnaphthalene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
88-75-5	2-Nitrophenol	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
91-94-1	3,3'-Dichlorobenzidine	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
534-52-1	4,6-Dinitro-2-methylphenol	-	< 52.6	< 53.8	< 52.1	< 51.5	< 51.5	< 52.1	< 51.5	< 51.5	< 51.0	< 51.5	< 52.1	< 51.5	< 54.9	< 50.0	< 52.6
			-					-	-		-			-	-		-

										BOREHOLES	3						
Method/CAS	Parameter/Lab Certificates	SQuiRT (Surface Water, Marine, Acute- Ocean Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-023 0-10'	B-023 28-38'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
	Lab Certificate Nun	nber	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Semivolatiles 8270 (ug/l)	cont.'d																
101-55-3	4-Bromophenyl phenyl ether	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
7005-72-3	4-Chlorophenyl phenyl ether	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
100-02-7	4-Nitrophenol	-	< 52.6	< 53.8	< 52.1	< 51.5	< 51.5	< 52.1	< 51.5	< 51.5	< 51.0	< 51.5	< 52.1	< 51.5	< 54.9	< 50.0	< 52.6
83-32-9	Acenaphthene	970	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
208-96-8	Acenaphthylene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
120-12-7	Anthracene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
56-55-3	Benzo (a) anthracene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
50-32-8	Benzo (a) pyrene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
205-99-2	Benzo (b) fluoranthene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
191-24-2	Benzo (g,h,i) perylene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
207-08-9	Benzo (k) fluoranthene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
65-85-0	Benzoic acid	-	< 52.6	< 53.8	< 52.1	< 51.5	< 51.5	< 52.1	< 51.5	< 51.5	< 51.0	< 51.5	< 52.1	< 51.5	< 54.9	< 50.0	< 52.6
100-51-6	Benzyl alcohol	-	< 21.1	< 21.5	< 20.8	< 20.6	< 20.6	< 20.8	< 20.6	< 20.6	< 20.4	< 20.6	< 20.8	< 20.6	< 22.0	< 20.0	< 21.1
111-91-1	bis (2-Chloroethoxy) methane	12,000	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
111-44-4	bis (2-Chloroethyl) ether	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
117-81-7	bis (2-Ethylhexyl) phthalate	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
85-68-7	Butyl benzyl phthalate	2,944	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
218-01-9	Chrysene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
53-70-3	Dibenz (a,h) anthracene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
132-64-9	Dibenzofuran	-	< 5.26	< 5.38	< 5.21	< 5.15	< 5.15	< 5.21	< 5.15	< 5.15	< 5.10	< 5.15	< 5.21	< 5.15	< 5.49	< 5.00	< 5.26
84-66-2	Diethyl phthalate	2,944	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
84-74-2	Di-n-butyl phthalate	2,944	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
117-84-0	Di-n-octyl phthalate	2,944	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
206-44-0	Fluoranthene	40	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
86-73-7	Fluorene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
118-74-1	Hexachlorobenzene	160	< 1.05	< 1.08	< 1.04	< 1.03	< 1.03	< 1.04	< 1.03	< 1.03	< 1.02	< 1.03	< 1.04	< 1.03	< 1.10	< 1.00	< 1.05
87-68-3	Hexachlorobutadiene	32	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
77-47-4	Hexachlorocyclopentadiene	7	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
67-72-1	Hexachloroethane	940	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
193-39-5	Indeno (1,2,3-cd) pyrene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
78-59-1	Isophorone	12,900	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
143-50-0	Kepone	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
84989-04-8	m+p-Cresols	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
91-20-3	Naphthalene	2,350	< 5.26	< 5.38	< 5.21	< 5.15	< 5.15	< 5.21	< 5.15	< 5.15	< 5.10	< 5.15	< 5.21	< 5.15	< 5.49	< 5.00	< 5.26
98-95-3	Nitrobenzene	6,680	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
62-75-9	n-Nitrosodimethylamine	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
621-64-7	n-Nitrosodi-n-propylamine	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
86-30-6	n-Nitrosodiphenylamine	3,300,000	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
95-48-7	o-Cresol	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
59-50-7	p-Chloro-m-cresol	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
87-86-5	Pentachlorophenol	13	< 21.1	< 21.5	< 20.8	< 20.6	< 20.6	< 20.8	< 20.6	< 20.6	< 20.4	< 20.6	< 20.8	< 20.6	< 22.0	< 20.0	< 21.1
85-01-8	Phenanthrene	-	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
108-95-2	Phenol	5,800	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5
129-00-0	Pyrene	300	< 10.5	< 10.8	< 10.4	< 10.3	< 10.3	< 10.4	< 10.3	< 10.3	< 10.2	< 10.3	< 10.4	< 10.3	< 11.0	< 10.0	< 10.5

										BOREHOLES	6						
Method/CAS	Parameter/Lab Certificates	SQuiRT (Surface Water, Marine, Acute- Ocean Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-023 0-10'	B-023 28-38'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
	Lab Certificate Num	nber	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Wet Chemistry/Miscellaneo	ous (mg/l)					•				•					•		
7664-41-7	Ammonia as N	-	< 0.10	0.12	< 0.10	< 0.10	0.62	< 0.10	2.81	5.36	0.12	0.10	< 0.10	0.75	0.56	1.13	1.10
57-12-5	Cyanide, Total	0.001	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
14797-55-8	Nitrate as N	-	< 0.150	< 0.150	< 10	< 10	< 0.150	< 0.150	< 0.150	< 0.150	< 0.150	< 0.150	<25.0	< 0.150	< 0.150	< 0.150	< 0.150
NA	Nitrate+Nitrite as N	-	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
14797-65-0	Nitrite as N	-	< 0.05	< 0.05	< 1.00	< 1.00	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<5.00	< 0.05	< 0.05	< 0.05	< 0.05
7723-14-0	Phosphorus (total)	-	0.32	0.265	0.193	0.161	0.161	0.214	0.233	0.264	0.550	0.280	0.469	0.145	0.122	0.103	0.157
18496-25-8	Sulfide	-	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
7727-37-9	TKN as N	-	1.28	0.81	< 0.50	0.88	1.50	1.95	3.82	6.96	1.700	1.23	1.08	< 0.50	1.13	1.73	1.69
-	TOC (Min)	-	1.3	1.1	< 1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.4	< 1.0	< 1.0	1.1	< 20.0	< 1.0	< 1.0
-	TOC (Max)	-	1.4	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.6	< 1.0	1.2	1.2	< 20.0	< 1.0	< 1.0
-	TOC (Mean)	-	1.4	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.5	< 1.0	< 1.0	1.2	< 20.0	< 1.0	< 1.0
Butyltins (ug/l)					0.0004	0.000.4	0.0004				0.0000				0.0004		0.0000
77-58-7	Dibutyltin	-	< 0.0029	< 0.0029	< 0.0031	< 0.0031	< 0.0031	< 0.0030	< 0.0030	< 0.0030	< 0.0029	<2.9	< 0.0030	< 0.0029	< 0.0031	< 0.0030	< 0.0030
112-34-5	Monobutyltin	-	< 0.0029	< 0.0029	< 0.0031	< 0.0031	< 0.0031	< 0.0030	< 0.0030	< 0.0030	< 0.0029	<2.9	< 0.0030	< 0.0029	< 0.0031	< 0.0030	< 0.0030
36643-28-4	TributyItin	0.42	<0.0029	<0.0029	<0.0031	<0.0031	<0.0031	<0.0030	<0.0030	<0.0030	<0.0029	<2.9	<0.0030	<0.0029	<0.0031	<0.0030	<0.0030
Dioxins and Furans (pg/l)				0.400		0.407	0.400	0.000	0.400					0.400	0.005	0.100	
7727-37-3	2378-TCDD	-	<0.131	<0.180	< 0.375	< 0.187	<0.406	< 0.338	<0.108	< 0.329	0.327 JQ	<0.238	< 0.209	< 0.130	< 0.395	< 0.188	0.322 JBQ
8118-44-9	12378-PeCDD	-	0.815 JQ	0.748 JQ	< 0.338	< 0.321	0.771 JB	<0.777	0.493 JBQ	<0.598	0.577 JQ	1.48 JQ	< 0.383	0.433 JBQ		0.669 JBQ	
7117-22-3	123478-HxCDD	-	0.929 JBQ	<0.255	<0.247	<0.338	3.11 JBQ	<0.608	0.239 JBQ	1.39 JBQ	1.04 JBQ	1.98 JBQ		0.514 JBQ		0.813 JB	0.744 JB
57117-44-9	123678-HxCDD	-		0.846 JBQ	<0.247	0.500 JB	4.14 JBQ	1.10 JBQ	0.493 JB	1.18 JBQ	1.66 JB	1.67 JBQ		0.508 JBQ		1.59 JB	1.58 JB
8118-22-6	123789-HxCDD	-	2.41 JB	1.52 JBQ	<0.263	<0.380	7.50 JB	2.01 JBQ	0.668 JB	3.45 JB	2.30 JB	2.21 JB	1.15 JQ	1.20 JBQ	2.58 JB	1.74 JB	1.41 JBQ
35822-46-9	1234678-HpCDD	-	38.4 B	21.8 B	3.61 JB	6.81 JBQ	124 B	23.5 B	10.6 B	68.9 B	42.4 B	27.8 BQ	17.5 B	12.0 B	50.9 B	35.7 B	34.7 B
3268-87-9	OCDD	-	775 B	592 B	313 B	147 B	3,140 B	473 B	186 B	1,200 B	841 B	714 B	423 B	329 B	1,530 B	596 B	669 B
51207-31-9	2378-TCDF	-		0.108 JBQ		<0.167	0.475 JBQ	<0.471	0.225 JBQ	<0.260	0.544 JBQ	<0.314	0.413 J	<0.0889	0.718 JQ	0.722 JQ	0.526 JQ
8118-77-4	12378-PeCDF	-	1.05 JB	0.770 JB		<0.112					0.274 JBQ	0.716 JBQ	0.466 JQ	0.440 JB		0.849 JBQ	
57117-31-4	23478-PeCDF	-		0.453 JBQ		<0.105		0.494 JBQ	-	0.409 JBQ		<0.255	<0.0945	0.291 JBQ	-	0.480 JBQ	
7117-22-3	123478-HxCDF	-		0.324 JBQ		<0.0736				0.418 JBQ		1.64 JBQ	<0.0770	0.274 JB		0.912 JBQ	
7117-99-5	123678-HxCDF	-		0.295 JBQ		<0.0706	0.800 JB		0.258 JBQ	0.139 JB	0.547 JB	0.662 JBQ	<0.0724	0.303 JBQ		0.554 JBQ	
8118-44-4	123789-HxCDF	-		0.740 JBQ		<0.0870	1.18 JB	<0.397		0.789 JBQ	0.884 JB	1.21 JBQ	0.291 JQ	0.988 JB	1.12 JBQ	1.02 JB	0.912 JBQ
7227-66-9	234678-HxCDF	-		0.260 JBQ	<0.127	<0.0846	0.655 JBQ	0.462 JB		0.321 JBQ		0.545 JB	<0.0799		0.900 JBQ		0.632 JBQ
6116-66-9	1234678-HpCDF	-		0.460 JBQ		<0.0709	3.99 JBQ	3.31 JBQ	1.19 JB	1.33 JBQ		1.77 JB		0.472 JBQ		4.36 JB	3.70 JB
55673-89-7	1234789-HpCDF	-		0.137 JBQ	0.279 JQ	<0.0879		0.448 JBQ		0.653 JBQ		<0.205	0.382 JQ	0.197 JB	0.854 JB	0.541 JBQ	0.487 JB
9O3D-10 -8	OCDF	-		0.992 JBQ	<0.148	<0.128	17.0 JB	8.15 JBQ	4.73 JBQ	6.68 JBQ		3.10 JB		2.17 JBQ		13.9 JB	12.6 JB
7727-37-0	TEQ ("<"=0)	-	2.58	1.92	0.508	0.162	5.14	1.01	1.12	1.98	2.64	3.35	0.709	1.30	4.13	2.21	2.46
7727-37-6	TEQ ("<"=1/2 Detection)	-	2.52	1.82	0.923	0.494	5.347	1.65	1.17	2.45	2.64	3.18	1.03	1.23	4.32	2.31	2.46
7727-37-2	TEQ ("<"=Detection)	-	2.45	1.72	1.34	0.83	5.55	2.28	1.23	2.93	2.64	3.00	1.35	1.16	4.52	2.40	2.46

										BOREHOLES	;						
Method/CAS	Parameter/Lab Certificates	SQuiRT (Surface Water, Marine, Acute- Ocean Disposal)	B-001 0-10'	B-003 0-10'	B-008 0-10'	B-013 0-10'	B-017 0-10'	B-017 20-30'	B-023 0-10'	B-023 28-38'	B-028 0-10'	B-030 0-10'	B-033 0-10'	B-038 0-10'	B-039 0-10'	B-044 0-10'	B-044 Dup 0-10'
	Lab Certificate Numl	ber	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18A0118	18A0118	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
PCB Congeners (pg/l)																	
34883-43-7	PCB8	-	<15.0	<15.2	<31.8	<31.9	<15.2	<15.0	<15.4	<15.5	46.0 J	40.5 J	<15.3	<15.4	<17.5	64	30.9 J
-	PCB18+30	-	<16.0	28.4 J	<34.0	<34.0	<16.2	<16.0	<16.5	<16.5	23.8 J	48 J	<16.3	<16.5	<18.6	74.4	47.4 J
-	PCB20+28	-	62.5	<22.3	<46.7	<46.8	<22.3	<22.1	<22.7	<22.7	95.4	83.4	<22.4	<22.6	<25.6	96.9	54
35693-99-3	PCB52	-	59.1	62.8	<31.8	<31.9	<15.2	<15.0	<15.4	<15.5	92.2	74.2	17.5 J	<15.4	<17.5	315	165
-	PCB49+69	-	51.6 J	48.2 J	<55.2	<55.3	<26.3	<26.1	<26.8	<26.8	86.6 J	59.7 J	<26.4	<26.7	<30.3	314	153
-	PCB44+47+65	-	64.7 J	66.9 J	<84.9	<85.1	<40.5	<40.1	<41.2	<41.2	96.2 J	61.9 J	<40.7	<41.2	<46.6	303	153
32598-10-0	PCB66	-	72.6	86.7	<36.1	<36.2	<17.2	<17.1	<17.5	<17.5	108	60.8	<17.3	<17.5	<19.8	190	89.2
-	PCB90+101+113	-	138 J	105 J	<99.8	<100	<47.6	<47.1	<48.4	<48.5	164 J	<46.2	<47.8	<48.4	<54.8	469	214
-	PCB86+87+97+109+119+125	-	<74.0	<75.0	286 J	<157	<74.9	<74.2	<76.2	<76.3	<73.6	<72.8	<75.3	<76.1	<86.2	187 J	85.2 J
70362-49-1	PCB77	-	<14.0	<14.2	<29.7	<29.8	<14.2	<14.0	<14.4	<14.4	<13.9	<13.8	<14.2	<14.4	<16.3	18.8 J	<14.3
31508-00-6	PCB118	-	130	116	<63.7	<63.8	<30.4	<30.1	<30.9	<30.9	156	83.6 J	<30.5	<30.9	<35.0	310	134
32598-14-4	PCB105	-	39.9 J	41.9 J	<36.1	<36.2	<17.2	<17.1	<17.5	<17.5	38.4 J	22.6 J	<17.3	<17.5	<19.8	35.3 J	<17.3
74472-48-3	PCB184	-	<14.0	<14.2	<29.7	<29.8	<14.2	<14.0	<14.4	<14.4	<13.9	<13.8	<14.2	<14.4	<16.3	<14.3	<14.3
-	PCB153+168	-	249	141	<63.7	<63.8	<30.4	<30.1	<30.9	<30.9	307	137	<30.5	<30.9	40.5 J	590	275
_	PCB129+138+163	-	213	141 J	<134	<134	<63.8	<63.2	<64.9	<64.9	219	101 J	<64.1	<64.8	<73.4	340	154 J
57465-28-8	PCB126	-	<16.0	<16.2	<34.0	<34.0	<16.2	<16.0	<16.5	<16.5	<15.9	<15.7	<16.3	<16.5	<18.6	<16.3	<16.3
-	PCB128+166	-	<29.0	<29.4	<61.6	<61.7	<29.4	<29.1	<29.9	<29.9	<28.8	<28.5	<29.5	<29.8	<33.8	<29.5	<29.5
52663-68-0	PCB187	-	107	60.5	<36.1	<36.2	<17.2	<17.1	<17.5	<17.5	117	57.6	<17.3	<17.5	<19.8	207	93
-	PCB183+185	-	41.9 J	<28.4	<59.4	<59.6	<28.3	<28.1	<28.8	<28.9	<27.8	<27.5	<28.5	<28.8	<32.6	82.8 J	29.0 J
-	PCB156+157	-	<23.0	<23.3	<48.8	<48.9	<23.3	<23.1	<23.7	<23.7	<22.9	<22.6	<23.4	<23.7	<26.8	28.9 J	<23.4
-	PCB180+193	-	113	69.5 J	<63.7	<63.8	<30.4	<30.1	<30.9	<30.9	99.7	46.5 J	<30.5	<30.9	<35.0	<30.5	90.3 J
35065-30-6	PCB170	-	50.9	<12.2	<25.5	<25.5	<12.1	<12.0	<12.4	<12.4	42.6 J	18.1 J	<12.2	<12.3	<14.0	96.5	41.5 J
32774-16-6	PCB169	-	<15.0	<15.2	<31.8	<31.9	<15.2	<15.0	<15.4	<15.5	<14.9	<14.7	<15.3	<15.4	<17.5	<15.3	<15.3
52663-78-2	PCB195	-	<22.0	<22.3	<46.7	<46.8	<22.3	<22.1	<22.7	<22.7	<21.9	<21.6	<22.4	<22.6	<25.6	<22.4	<22.4
40186-72-9	PCB206	-	<16.0	52.7	<34.0	<34.0	<16.2	<16.0	<16.5	<16.5	31.6 J	<15.7	<16.3	<16.5	<18.6	40.9 J	18.8 J
2051-24-3	PCB209	-	47.1 J	52.8	71.0 JB	71.1 JB	38.7 JB	22.4 J	20.7 J	22.5 J	101	52.1	31.8 JB	53.7 B	26.3 J	181	97.9
7727-37-4	Total PCBs(<=0)	33,000	1,440	957	357	71.1	38.7	22.4	20.7	22.5	1,838	465	49.3	53.7	66.8	3,945	1,925
7727-37-3	Total PCBs(<=1/2 Detection)	33,000	1,567	1,117	966	760	367	347	354	357	1,948	612	371	387	427	4,009	2,002
7727-37-6	Total PCBs(<=Detection)	33,000	1,694	1,276	1,576	1,449	695	672	688	691	2,058	758	693	720	787	4,073	2,078
Shaded	Detection Exceeds Criteria																

ShadedDetection Exceeds CriteriaShadedReporting Limit Exceeds Criteria

NT-Not Tested

Bold-Detected-Non J and J Values

Laboratory Flags

B Detected in Method Blank

J Estimated concentration between Method Detection Limit and Minimum Reporting Level

P-Duplicate analysis does not meet the acceptance criteria for precision

Q EMPC - Estimated Maximum Possible Concentration

		SQuiRT						E	BOREHOLES						
CASRN	Parameter/Lab Certificates	(Surface Water, Marine, Acute- Ocean Disposal)	B-001	B-003	B-008	B-013	B-017	B-023	B-028	B-030	B-033	B-038	В-039	B-044	B-044 Dup
Tatal Datasa			18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
	able Metals (mg/l)	1	0.400	0.474	0.0045	0.404	0.400	0.405	0.400	0.040	0.115	0.0040	0.054		0.000
	Aluminum	-	0.166	0.171	0.0645	0.134	0.106	0.195	0.168	0.218	0.115	0.0610	0.251	0.288	0.236
	Antimony	-	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
7440-38-2	Arsenic	0.069	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200
7440-41-7	Beryllium	-	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
7440-43-9	Cadmium	0.040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
7440-47-3	Chromium	1.1	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0040	< 0.0100	< 0.0100	< 0.0100
7440-48-4	Cobalt	-	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0100	< 0.0040	< 0.0040	< 0.0040
7440-50-8	Copper	0.0048	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7439-89-6	Iron	-	0.119	0.128	0.0449	0.136	0.0818	0.115	0.134	0.176	0.104	0.0404	0.239	0.340	0.508
7439-92-1	Lead	0.21	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7439-96-5	Manganese	-	0.0116	0.0113	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0143	0.0140	< 0.0100	0.0146	0.0105	0.0134	0.0177
7439-97-6	Mercury	0.0018	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0	Nickel	0.074	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7782-49-2	Selenium	0.290	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
7440-22-4	Silver	0.00095	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
7440-28-0	Thallium	2.13	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
7440-31-5	Tin	-	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200
7440-66-6	Zinc	0.090	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0119	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100

		SQuiRT						В	OREHOLES						
CASRN	Parameter/Lab Certificates	(Surface Water, Marine, Acute- Ocean	B-001	B-003	B-008	B-013	B-017	B-023	B-028	B-030	B-033	B-038	B-039	B-044	B-044 Dup
		Disposal)	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Pesticides (ug	j/l)														
86-50-0	Azinphos-methyl	-	< 0.204	< 0.206	< 0.206	< 0.213	< 0.217	< 0.206	< 0.206	< 0.204	< 0.208	< 0.213	< 0.211	< 0.222	< 0.225
126-75-0	Demeton 1	-	< 0.204	< 0.206	< 0.206	< 0.213	< 0.217	< 0.206	< 0.206	< 0.204	< 0.208	< 0.213	< 0.211	< 0.222	< 0.225
126-75-0	Demeton 2	-	< 0.204	< 0.206	< 0.206	< 0.213	< 0.217	< 0.206	< 0.206	< 0.204	< 0.208	< 0.213	< 0.211	< 0.222	< 0.225
125-75-0	Demeton, o+s	-	< 0.408	< 0.412	< 0.412	< 0.426	< 0.435	< 0.412	< 0.412	< 0.408	< 0.417	< 0.426	< 0.421	< 0.444	< 0.449
56-38-2	Ethyl Parathion	-	< 0.204	< 0.206	< 0.206	< 0.213	< 0.217	< 0.206	< 0.206	< 0.204	< 0.208	< 0.213	< 0.211	< 0.222	< 0.225
121-75-5	Malathion	-	< 0.204	< 0.206	< 0.206	< 0.213	< 0.217	< 0.206	< 0.206	< 0.204	< 0.208	< 0.213	< 0.211	< 0.222	< 0.225
56-38-2	Methyl parathion	-	< 0.204	< 0.206	< 0.206	< 0.213	< 0.217	< 0.206	< 0.206	< 0.204	< 0.208	< 0.213	< 0.211	< 0.222	< 0.225
53-19-0	2,4'-DDD	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
3424-82-6	2,4'-DDE	-	<0.0013	0.00032 JP	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	0.00025 JP
789-02-6	2,4'-DDT	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
72-54-8	4,4'-DDD	3.6	<0.0013	<0.0013	0.00036 J	0.00026 J	0.00059 J	0.00024 JP	<0.0014	<0.0014	<0.0014	<0.0013	0.00060 J	0.00067 J	0.00056 J
72-55-9	4,4'-DDE	14	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
50-29-3	4,4'-DDT	0.065	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
309-00-2	Aldrin	0.65	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
319-84-6	alpha-BHC	0.08	<0.0013	<0.0013	<0.0013	<0.0013	0.0015 P	0.00037 JP	<0.0014	<0.0014	0.0013 JP	<0.0013	0.0012 JP	0.0013 P	0.0033
319-85-7	beta-BHC	0.08	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
57-74-9	Chlordane (technical)	0.045	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.014	<0.013	<0.015
103-17-3	Chlorobenside	-	< 0.0033	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	<0.0033	<0.0037	< 0.0033	<0.0039
1861-32-1	DCPA	-	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	<0.0029	<0.0026	<0.003
319-86-8	delta-BHC	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
60-57-1	Dieldrin	0.355	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
959-98-8	Endosulfan I	0.017	<0.0013	<0.0013	0.00028 J	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
33213-65-9	Endosulfan II	0.017	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
1031-07-8	Endosulfan sulfate	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
72-20-8	Endrin	0.0185	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
7421-93-4	Endrin aldehyde	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	0.00042 JP	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
58-89-9	gamma-BHC (Lindane)	0.08	0.00046 JP	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	0.00020 JP	<0.0016
76-44-8	Heptachlor	0.0265	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	0.00054 JP	<0.0015	<0.0013	<0.0016
1024-57-3	Heptachlor epoxide	0.0265	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	< 0.0013	<0.0015	< 0.0013	<0.0016
72-43-5	Methoxychlor	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	< 0.0013	<0.0015	< 0.0013	<0.0016
2385-85-5	Mirex	-	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0014	<0.0014	<0.0014	<0.0013	<0.0015	<0.0013	<0.0016
8001-35-2	Toxaphene	0.21	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.11	<0.10	<0.12

		SQuiRT					TRESOLIS	E	BOREHOLES						1
CASRN	Parameter/Lab Certificates	(Surface Water, Marine, Acute- Ocean	B-001	B-003	B-008	B-013	B-017	B-023	B-028	B-030	B-033	B-038	B-039	B-044	B-044 Dup
		Disposal)	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Semivolatiles															
87-61-6	1,2,4-Trichlorobenzene	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
122-66-7	1,2-Diphenylhydrazine	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
90-12-0	1-Methylnaphthalene	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
108-60-1	2,2'-Oxybis (1-chloropropane)	-	<10.2	<10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
95-95-4	2,4,6-Trichlorophenol	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
120-83-2	2,4-Dichlorophenol	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
105-67-9	2,4-Dimethylphenol	-	<0.51	<0.52	< 0.51	< 0.52	< 0.56	< 0.53	< 0.51	< 0.52	< 0.53	< 0.52	< 0.56	< 0.56	< 0.56
51-28-5	2,4-Dinitrophenol	-	<51.0	<51.5	< 50.5	< 51.5	< 55.6	< 53.2	< 51.0	< 51.5	< 52.6	< 52.1	< 55.6	< 55.6	< 55.6
51-28-5	2,4-Dinitrotoluene	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
606-20-2	2,6-Dinitrotoluene	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
91-58-7	2-Chloronaphthalene	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
95-57-8	2-Chlorophenol	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
91-57-6	2-Methylnaphthalene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
88-75-5	2-Nitrophenol	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
91-94-1	3,3'-Dichlorobenzidine	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
534-52-1	4,6-Dinitro-2-methylphenol	-	<51.0	<51.5	< 50.5	< 51.5	< 55.6	< 53.2	< 51.0	< 51.5	< 52.6	< 52.1	< 55.6	< 55.6	< 55.6
101-55-3	4-Bromophenyl phenyl ether	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
7005-72-3	4-Chlorophenyl phenyl ether	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
100-02-7	4-Nitrophenol	-	<51.0	<51.5	< 50.5	< 51.5	< 55.6	< 53.2	< 51.0	< 51.5	< 52.6	< 52.1	< 55.6	< 55.6	< 55.6
83-32-9	Acenaphthene	970	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
208-96-8	Acenaphthylene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
120-12-7	Anthracene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
56-55-3	Benzo (a) anthracene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
50-32-8	Benzo (a) pyrene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
205-99-2	Benzo (b) fluoranthene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
191-24-2	Benzo (g,h,i) perylene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
207-08-9	Benzo (k) fluoranthene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
65-85-0	Benzoic acid	-	<51.0	<51.5	< 50.5	< 51.5	< 55.6	< 53.2	< 51.0	< 51.5	< 52.6	< 52.1	< 55.6	< 55.6	< 55.6
	Benzyl alcohol	-	<20.4	<20.6	< 20.2	< 20.6	< 22.2	< 21.3	< 20.4	< 20.6	< 21.1	< 20.8	< 22.2	< 22.2	< 22.2
111-91-1	bis (2-Chloroethoxy) methane	12,000	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
	bis (2-Chloroethyl) ether	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
117-81-7	bis (2-Ethylhexyl) phthalate	_	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
85-68-7	Butyl benzyl phthalate	2,944	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
	Chrysene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1

		CONIDT					(NESOLIS	E	BOREHOLES						
CASRN	Parameter/Lab Certificates	SQuiRT (Surface Water, Marine, Acute- Ocean Disposal)	B-001 18D0180	B-003 18D0181	B-008	B-013 17K0936	B-017 18A0006	B-023 18A0257	B-028	B-030 18D0178	B-033 17L0317	B-038 18C0046	B-039 18A0006	B-044 18A0006	B-044 Dup 18A0006
Semivolatiles	8270 (ug/l)		1000100	1000101	1/K092/	1760936	16A0006	16AU257	1600179	1000170	17L0317	1600046	10A0006	16A0006	10A0006
53-70-3	Dibenz (a,h) anthracene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
132-64-9	Dibenzofuran	-	<5.10	< 10.0	< 5.05	< 5.15	< 5.56	< 5.32	< 5.10	< 5.15	< 5.26	< 5.21	< 5.56	< 5.56	< 5.56
84-66-2	Diethyl phthalate	2,944	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
84-74-2	Dimethyl phthalate	_,• · ·	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
117-84-0	Di-n-butyl phthalate	2,944	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
206-44-0	Di-n-octyl phthalate	2,944	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
206-44-0	Fluoranthene	40	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
86-73-7	Fluorene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
118-74-1	Hexachlorobenzene	160	<1.02	<1.03	< 1.01	< 1.03	< 1.11	< 1.06	< 1.02	< 1.03	< 1.05	< 1.04	< 1.11	< 1.11	< 1.11
87-68-3	Hexachlorobutadiene	32	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
77-47-4	Hexachlorocyclopentadiene	7	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
67-72-1	Hexachloroethane	940	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
193-39-5	Indeno (1,2,3-cd) pyrene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
78-59-1	Isophorone	12,900	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
143-50-0	Kepone	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
84989-04-8	m+p-Cresols	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
91-20-3	Naphthalene	2,350	<5.10	<5.15	< 5.05	< 5.15	< 5.56	< 5.32	< 5.10	< 5.15	< 5.26	< 5.21	< 5.56	< 5.56	< 5.56
98-95-3	Nitrobenzene	6,680	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
62-75-9	n-Nitrosodimethylamine	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
621-64-7	n-Nitrosodi-n-propylamine	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
86-30-6	n-Nitrosodiphenylamine	3,300,000	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
95-48-7	o-Cresol	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
59-50-7	p-Chloro-m-cresol	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
87-86-5	Pentachlorophenol	13	<20.4	<20.6	< 20.2	< 20.6	< 22.2	< 21.3	< 20.4	< 20.6	< 21.1	< 20.8	< 22.2	< 22.2	< 22.2
85-01-8	Phenanthrene	-	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
108-95-2	Phenol	5,800	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
129-00-0	Pyrene	300	<10.2	< 10.3	< 10.1	< 10.3	< 11.1	< 10.6	< 10.2	< 10.3	< 10.5	< 10.4	< 11.1	< 11.1	< 11.1
7664-41-7	y/Miscellaneous (mg/l) Ammonia as N		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.33	< 0.10	0.15	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
57-12-5	Cyanide, Total	- 0.001	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.01	< 0.10	0.15 < 0.01	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	Nitrate as N		< 0.01	< 0.150	< 0.01	< 10.0	< 0.01	< 0.150	< 0.150	< 0.150	< 100	< 0.01	< 0.01	< 0.01	< 0.01
14797-55-8 14797-65-0	Nitrite as N	-	< 0.150	< 0.150	< 0.150	< 1.00	< 0.150	< 0.150	< 0.150	< 0.150	< 100 18	< 0.150	< 0.150	< 0.150	< 0.150
			< 0.05	< 0.05	< 0.05	< 0.10	< 0.05	< 0.05	< 0.05	<0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05
7723-14-0 7723-14-0	Nitrate+Nitrite as N	-	< 0.10	< 0.10	< 0.10 0.038	< 0.10 0.027	< 0.10 0.020	< 0.10	< 0.10	< 0.100	<0.10 0.027	< 0.10	< 0.10 0.036	< 0.10 0.054	< 0.10 0.062
18496-25-8	Phosphorus (total) Sulfide	-	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 0.020	< 1.00	< 1.00	< 1.00
-	TKN as N	-	0.53	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.74	0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.51
			1.0	< 0.50 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.5	< 1.0	< 1.0	< 1.0	< 0.50	< 0.50	< 1.0
-	TOC (Min)	-			< 1.0										
-	TOC (Max)	-	1.3	1.3		< 1.0	< 1.0	< 1.0	1.2	< 1.0	< 1.0	< 1.0	< 20.0	< 1.0	< 1.0
-	TOC (Mean)	-	1.2	1.2	< 1.0	< 1.0	< 1.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 20.0	< 1.0	< 1.0

		SQuiRT						E	BOREHOLES						
CASRN	Parameter/Lab Certificates	(Surface Water, Marine, Acute- Ocean Disposal)	B-001	B-003	B-008	B-013	B-017	B-023	B-028	B-030	B-033	B-038	B-039	B-044	B-044 Dup
		Disposaly	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
Butyltins (ug/l)		T						F	1						-
	Dibutyltin	-	<0.0030	<0.0030	<0.0031	<0.0031	<0.0033	<0.0031	<0.0029	<0.0030	<0.0030	<0.0031	<0.0031	<0.0033	<0.0033
112-34-5	Monobutyltin	-	<0.0030	<0.0030	<0.0031	<0.0031	0.27	<0.0031	<0.0029	<0.0030	0.80	<0.0031	<0.0031	<0.0033	<0.0033
36643-28-4	Tributyltin	0.42	<0.0030	<0.0030	<0.0031	<0.0031	<0.0033	<0.0031	<0.0029	<0.0030	<0.0030	<0.0031	<0.0031	<0.0033	<0.0033
Dioxins and Fi															
1746-01-6	2378-TCDD	-	<0.0714	0.287 JBQ	<0.216	<0.190	<0.157	<0.0862	0.200 JBQ	-	0.603 JQ	<0.119	<0.210	<0.257	0.343 JBQ
40321-76-4	12378-PeCDD	-	0.291 JBQ	0.745 JBQ	<0.302	<0.233	0.707 JBQ	0.293 JBQ	0.251 JBQ	<0.158	0.887 JBQ	0.764 JBQ	<0.259	0.854 JBQ	0.753 JB
39227-28-6	123478-HxCDD	-	0.165 JB	0.119 JB	<0.181	<0.119	0.348 JBQ	<0.147	0.128 JBQ	0.175 JBQ	0.902 JQ	0.493 JB	0.326 JBQ	0.512 JBQ	0.385 JBQ
57653-85-7	123678-HxCDD	-	0.259 JBQ	0.262 JBQ	<0.174	<0.120	0.923 JBQ	0.190 JBQ	0.187 JBQ	0.311 JBQ	3.48 JBQ	0.478 JB	0.658 JB	0.984 JB	0.982 JBQ
19408-74-3	123789-HxCDD	-	0.252 JB	0.387 JBQ	<0.223	<0.122	0.653 JBQ	0.344 JBQ	0.294 JBQ	0.127 JBQ	1.40 JBQ	0.209 JB	0.435 JBQ	0.791 JBQ	0.608 JBQ
35822-46-9	1234678-HpCDD	-	1.63 JBQ	1.37 JBQ	<0.224	0.342 JBQ	17.2 B	8.41 JB	1.32 JB	1.88 JBQ	131 B	3.80 JB	18.9 B	18.9 B	22.6 B
3268-87-9	OCDD	-	24.2 B	28.5 B	5.06 JBQ	2.35 JBQ	94.0 B	91.2 B	24.4 B	35.4 B	981 B	54.0 B	139 B	126 B	149 B
51207-31-9	2378-TCDF	-	0.365 JB	<0.0592	<0.258	<0.145	0.239 JBQ	0.238 JBQ	0.0571 JBQ	0.204 JBQ	<0.358	0.153 JBQ	<0.239	<0.201	0.337 JQ
57117-41-6	12378-PeCDF	-	0.280 JBQ	0.804 JBQ	<0.151	0.598 JB	0.892 JBQ	0.493 JBQ	0.538 JBQ	0.486 JBQ	0.680 JQ	0.740 JBQ	0.768 JBQ	<0.109	0.595 JBQ
57117-31-4	23478-PeCDF	-	0.203 JBQ	0.445 JBQ	<0.180	0.668 JBQ	0.575 JBQ	0.217 JBQ	0.241 JBQ	0.130 JBQ	0.706 JQ	0.392 JBQ	0.468 JBQ	0.591 JBQ	0.639 JBQ
70918-21-9	123478-HxCDF	-	0.148 JBQ	0.377 JBQ	<0.0907	<0.0943	0.462 JBQ	0.297 JBQ	0.151 JBQ	0.148 JB	1.48 JBQ	0.351 JBQ	0.404 JB	0.682 JBQ	0.500 JB
60851-34-5	123678-HxCDF	-	0.226 JB	0.356 JBQ	0.190 JQ	0.289 JQ	0.592 JB	0.313 JBQ	0.195 JB	0.230 JB	0.478 JQ	0.265 JBQ	0.307 JBQ	0.452 JB	0.467 JBQ
55673-89-7	123789-HxCDF	-	0.792 JB	0.982 JBQ	0.390 JBQ	0.566 JB	0.903 JB	0.576 JBQ	0.863 JB	0.743 JB	1.69 JBQ	0.805 JBQ	0.953 JBQ	0.994 JB	1.03 JB
60851-34-5	234678-HxCDF	-	0.167 JBQ	0.337 JBQ	<0.125	0.187 JBQ	0.289 JB	0.318 JBQ	0.148 JBQ	0.109 JBQ	0.946 JQ	0.266 JBQ	0.289 JBQ	0.362 JBQ	0.342 JBQ
67562-39-4	1234678-HpCDF	-	0.224 JBQ	0.260 JBQ	0.0800 JQ	<0.0516	2.70 JB	1.62 JB	0.253 JBQ	0.261 JBQ	31.5 B	0.731 JB	3.35 JB	2.75 JB	3.93 JB
55673-89-7	1234789-HpCDF	-	0.165 JBQ	0.230 JBQ	<0.0874	<0.0623	0.360 JB	0.148 JBQ	0.144 JB	0.162 JB	2.64 JBQ	0.426 JBQ	0.555 JB	0.428 JB	0.460 JB
39001-02-0	OCDF	-	<0.0940	0.574 JB	<0.114	<0.100	10.8 JB	5.78 JB	0.347 JBQ	0.662 JBQ	105 B	2.04 JBQ	13.7 JB	12.6 JB	14.3 JB

WATER RESULTS

		SQuiRT						E	BOREHOLES]
CASRN	Parameter/Lab Certificates	(Surface Water, Marine, Acute- Ocean	B-001	B-003	B-008	B-013	B-017	B-023	B-028	B-030	B-033	B-038	B-039	B-044	B-044 Dup
		Disposal)	18D0180	18D0181	17K0927	17K0936	18A0006	18A0257	18D0179	18D0178	17L0317	18C0046	18A0006	18A0006	18A0006
PCB Congene	rs (pg/l)														
34883-43-7	PCB8	-	<16.3	<16.6	<30.6	<29.6	<15.8	<16.2	<15.7	<16.1	<15.3	<14.9	<16.7	<16.8	<16.8
-	PCB18+30	-	<17.4	<17.7	<32.7	<31.6	<16.9	<17.3	<16.7	<17.2	<16.3	<15.9	<17.8	<17.9	<17.9
-	PCB20+28	-	<23.9	<24.4	<44.9	<43.5	<23.2	<23.8	<23.0	<23.6	<22.4	<21.8	<24.5	<24.6	<24.6
35693-99-3	PCB52	-	<16.3	<16.6	<30.6	<29.6	<15.8	<16.2	<15.7	<16.1	<15.3	<14.9	<16.7	<16.8	<16.8
-	PCB49+69	-	<28.2	<28.8	<53.1	<51.4	<27.4	<28.1	<27.2	<27.9	<26.5	<25.8	<29.0	<29.1	<29.1
-	PCB44+47+65	-	<43.4	<44.3	<81.6	<79.1	<42.2	<43.3	<41.8	<42.9	<40.8	<39.7	<44.6	<44.7	<44.7
32598-10-0	PCB66	-	<18.4	<18.8	<34.7	<33.6	<17.9	<18.4	<17.8	<18.2	<17.3	<16.9	<19.0	<19.0	<19.0
-	PCB90+101+113	-	<51.0	<52.0	<95.9	<92.9	<49.6	<50.9	<49.1	<50.4	<47.9	<46.7	<52.4	<52.5	<52.6
-	PCB86+87+97+109+119+125	-	<80.3	<81.9	<151	<146	<78.1	<80.1	<77.3	<79.4	<75.4	<73.5	<82.5	<82.7	<82.8
70362-49-1	PCB77	-	<15.2	<15.5	<28.6	<27.7	<14.8	<15.2	<14.6	<15.0	<14.3	<13.9	<15.6	<15.6	<15.7
31508-00-6	PCB118	-	<32.5	<33.2	<61.2	<59.3	<31.6	<32.5	<31.3	<32.2	<30.6	<29.8	<33.4	<33.5	<33.6
32598-14-4	PCB105	-	<18.4	<18.8	<34.7	<33.6	<17.9	<18.4	<17.8	<18.2	<17.3	<16.9	<19.0	<19.0	<19.0
74472-48-3	PCB184	-	<15.2	<15.5	<28.6	<27.7	<14.8	<15.2	<14.6	<15.0	<14.3	<13.9	<15.6	<15.6	<15.7
-	PCB153+168	-	<32.5	<33.2	<61.2	<59.3	<31.6	<32.5	<31.3	<32.2	<30.6	<29.8	<33.4	<33.5	39.6 J
_	PCB129+138+163	-	<68.3	<69.8	<129	<125	<66.5	<68.2	<65.8	<67.6	<64.2	<62.6	<70.2	<70.4	<70.5
57465-28-8	PCB126	-	<17.4	<17.7	<32.7	<31.6	<16.9	<17.3	<16.7	<17.2	<16.3	<15.9	<17.8	<17.9	<17.9
_	PCB128+166	-	<31.5	<32.1	<59.2	<57.3	<30.6	<31.4	<30.3	<31.1	<29.6	<28.8	<32.3	<32.4	<32.4
52663-68-0	PCB187	-	<18.4	<18.8	<34.7	<33.6	<17.9	<18.4	<17.8	<18.2	<17.3	<16.9	<19.0	<19.0	<19.0
_	PCB183+185	-	<30.4	<31.0	<57.1	<55.3	<29.5	<30.3	<29.3	<30.0	<28.5	<27.8	<31.2	<31.3	<31.3
-	PCB156+157	-	<24.9	<25.5	<46.9	<45.5	<24.3	<24.9	<24.0	<24.7	<23.4	<22.8	<25.6	<25.7	<25.7
-	PCB180+193	-	<32.5	<33.2	<61.2	<59.3	<31.6	<32.5	<31.3	<32.2	<30.6	<29.8	<33.4	<33.5	<33.6
35065-30-6	PCB170	-	<13.0	<13.3	<24.5	<23.7	<12.7	<13.0	<12.5	<12.9	<12.2	<11.9	<13.4	<13.4	<13.4
32774-16-6	PCB169	-	<16.3	<16.6	<30.6	<29.6	<15.8	<16.2	<15.7	<16.1	<15.3	<14.9	<16.7	<16.8	<16.8
52663-78-2	PCB195	-	<23.9	<24.4	<44.9	<43.5	<23.2	<23.8	<23.0	<23.6	<22.4	<21.8	<24.5	<24.6	<24.6
40186-72-9	PCB206	-	<17.4	<17.7	<32.7	<31.6	<16.9	<17.3	<16.7	<17.2	<16.3	<15.9	<17.8	<17.9	<17.9
2051-24-3	PCB209	-	<17.4	<17.7	59.3 JB	99.9 B	18.8 JB	22.1 J	18.2 J	<17.2	51.7 B	51.8 B	23.6 JB	24.7 J	27.1 J

Shaded Detection Exceeds Criteria Reporting Limit Exceeds Criteria

Shaded

NT-Not Tested

Bold-Detected-Non J and J Values

Laboratory Flags

B Detected in Method Blank

J Estimated concentration between Method Detection Limit and Minimum Reporting Level

P-Duplicate analysis does not meet the acceptance criteria for precision

Q EMPC - Estimated Maximum Possible Concentration

- Laboratory data flags are explained in the table footnotes. For example a "J" flag signifies an estimated organic value (typically above the laboratory detection limit but below the laboratory quantification/reporting limit);
- > Detections above a comparison value are highlighted in yellow; and
- > Non-detections with laboratory reporting limits above a comparison value are highlighted in blue.

In general, samples collected from the northern and southern landward locations consisted of finer grained materials and those collected from the middle segments tended to have higher proportions of coarser-grained materials. The coarsest sediments were encountered in cores recovered from locations in the vicinity of the south tunnel island. The following general sediment data were summarized from *Table 3*:

- Sample B-023 (0-10') and B-028 (0-10') had a large percentage of gravel, 24.8% and 42.9% respectively. All other samples were less than 7.5%;
- > Sand was greater than 90% in B-001 (0-10'), B-008 (0-10'), B-013 (0-10'), and B-033 (0-10'); and
- > Fines were 70% or greater in B-023 (28-38'), B-023 (88-98'), B-038 (0-10'), B-039 (0-10') and B-044 (0-10').

Other general test results in *Table 3* are summarized as follows:

- > In bulk sediment samples, no SVOCs, PCB Aroclors or butyltin compounds were detected;
- > The sediment pH ranged from 7.4 to 8.7 standard units; and
- > Although acetone was detected in seven boreholes, acetone is considered by the EPA to be a common laboratory contaminant (Risk Assessment Guidance for Superfund, Volume I Human Health Evaluation Manual, Part A) and likely not site related.

Results specific to the various disposal options are summarized below.

4.1 Upland Disposal Results

Observations from the Table 3 sediment data are summarized below with respect to potential upland disposal.

4.1.1 <u>Weanack Comparison</u>

Metals

> No sediment samples contained concentrations exceeding any of the 17 Weanack's EC for metals.

Chemicals

- No sediment samples contained chemicals or organic concentrations exceeding any of the Weanack EC including those for PCB Aroclors, pesticides, and dioxins.
- > Although TPH was detected in sediment at three borehole locations, which ranged in combined TPH (TPH-DRO + TPH-GRO) from 23.7 mg/kg to 62 mg/kg, there is no Weanack EC for TPH. In general, TPH measures the mixture of hydrocarbons found in a sample, but is not a test typically used to quantify risk, which likely explains why no EC exists.

In summary, it appears the bulk sediment data may meet Weanack's exclusion criteria for acceptance as disposal into their Earle Basin. However it should be noted that additives such as introduced into the BT drilling process may contain petroleum and other compounds which the DB offerors may further evaluate as to potential additional testing and management requirements if introduced into the material for disposal.

4.1.2 Other Potential Upland Disposal Sites

Other potential upland disposal sites may exist including additional mining excavations like sand and gravel pits. To provide information for potential use of HRBT sediments at other upland areas, the DEQ clean fill limit for

TPH was reviewed. Virginia Solid Waste Management Regulations (VSWMR) 9VAC20-81-660 (*Soil Contaminated with Petroleum Products*) establishes clean fill limit requirements including:

- > No failure of RCRA hazardous waste characteristics
- > Extractable Organic Halides (EOX) below 100 mg/kg and benzene, toluene, ethylbenzene and xylene (BTEX) below 10 mg/kg
- > TPH below 50 mg/kg

If the above criteria are met, the regulations can allow use with restrictions including set back limitations such as disposal no closer than 100 feet of any regularly flowing surface water body; 500 feet of any well, spring or other groundwater source of drinking water, and 200 feet from any residence, school, hospital, nursing home, or recreational park area. The HRBT sediment data detections included the following:

- > The only EOX detection (16.6 mg/kg) was below the 100 mg/kg limit;
- > No BTEX was detected;
- > TPH detections in sediment occurred in the following three borehole locations.
 - B-001 near the Hampton shore with TPH-DRO of 62 mg/kg from 0-10 feet deep.
 - B-003 between the Hampton shore and north island with TPH-DRO of 27.8 mg/kg and TPH-GRO of 0.27 mg/kg from 0-10 feet deep.
 - B-044 (and its duplicate) near the Norfolk shore with TPH-DRO ranging from 23.7 mg/kg to 32.8 mg/kg from 0-10 feet deep.
- Naphthalene, a common petroleum related organic compound was also detected as a VOC in sediment (0.067 mg/kg to 0.0754 mg/kg) in the same B-001 and B-003 samples were TPH was detected.

Except for the B-001 sample, those HRBT results for petroleum related parameters appear to meet the petroleum clean fill limits. However, it should be noted that additives such as introduced into the BT drilling process may contain petroleum, which the DB offerors should take into consideration when evaluating sediment management in their proposal. Without knowing the potential upland disposal scenario, site setting details and land use plans that a DB offeror may consider, it was not possible to adequately evaluate likely candidate disposal sites and the appropriate data comparison/reference values in this preliminary study. The DB offerors can review this preliminary data set including the non-petroleum detections and take into consideration as part of their overall sediment management in their proposal.

4.2 Landfill Disposal Results

Observations from *Table 3* sediment data are summarized below with respect to potential placement in a Virginia landfill.

- > No parameter appeared to exceed any RCRA hazardous waste limit (no hazardous waste was identified).
- > Although some PCB Congeners (which have a much lower laboratory reporting limit) were detected in sediment, PCB Aroclors (which have a higher laboratory reporting limit) were not detected in sediment (all total PCB sums less than 1.281 mg/kg). The PCB detections were below the typical 50 mg/kg landfill regulatory maximum.
- > As described above, TPH was detected in sediment at three borehole locations, which ranged in combined TPH (TPH-DRO + TPH-GRO) from 23.7 mg/kg to 62 mg/kg. These TPH detections are below typical landfill permit maximums.

The sediment data described above would appear to allow for disposal in a Virginia landfill, but not require/dictate disposal in a landfill as other options may be considered. Two related items in particular that the DB offeror may also consider are the following:

- > Any additives to the dredge sediment such as drilling additives introduced into a BT process that may contain polymers/petroleum should also be considered when selecting a disposal location like an appropriate landfill; and
- Most landfills are not allowed to receive material containing free liquids and typically have requirements for the material they receive to pass a paint filter test. Both paint filter tests and percent solids tests for the bulk sediment samples were conducted in this study. Paint filter tests were <1 ml/100g except for two samples (1 ml/100g at B-033 0-10 feet and 2 ml/100g at B-017 0-10 feet) whereas percent solids ranged from 52.8% and 87.7%. The DB offerors can evaluate the paint filter and percent solids data along with their proposed means/methods to evaluate appropriate handling/disposal and water management.

4.3 Ocean Disposal Results

The *Table 3* (sediment), *Table 4* (elutriate), and *Table 5* (water) data are summarized below with respect to potential ocean disposal.

4.3.1 <u>Metals</u>

In the sediment (*Table 3*):

- The ERL for arsenic (8.2 mg/kg) was exceeded in three boreholes (B-023 at 0-10 feet and 28-28 feet, B-039 from 0-10 feet and B-044 from 0-10 feet). Those arsenic exceedances ranged from 8.53 mg/kg to 16.3 mg/kg.
- The ERL for cadmium (1.2 mg/kg) was exceeded in three boreholes (B-023 at 0-10 feet and 28-28 feet, B-039 from 0-10 feet and B-044 from 0-10 feet). Those cadmium exceedances ranged from 1.31 mg/kg to 2.11 mg/kg.
- The ERL for nickel (20.9 mg/kg) was exceeded in one boreholes (B-023 at 0-10 feet and 28-28 feet). Those nickel exceedances ranged from 22.1 mg/kg to 25.3 mg/kg.
- > All other metals concentrations were below the ERL.
- > No metal ERM values were exceeded.

In the elutriate and water samples (Table 4 and Table 5):

- > The only metal detected above a SQUIRT VALUE was copper, which only occurred in the elutriate sample for the B-033 0-10 feet sample. For this elutriate sample, the detection of 0.0182 mg/l exceeded the salt water acute criterion of 0.0048 mg/l.
- The rest of the copper data and all of the silver data were non-detect; however, the laboratory reporting limit (0.01 mg/l for both metals) exceeded their respective SQUIRT value If the DB offerors wish to further pursue ocean disposal, then additional test methods/approaches may be considered.

4.3.2 <u>Chemicals/Organics</u>

In the sediment, the following chemicals/organic compounds exceeded the sediment ERL (Table 3):

- The ERL for the pesticide 4,4'-DDD (2 ug/kg) was exceeded in two boreholes (B-001 from 0-10 feet and B-030 from 0-10 feet). Those ERL exceedances ranged from 6.5 ug/kg to 30 ug/kg. Note that the B-001 (0-10 feet) concentration (30 ug/kg) also exceeded the ERM of 20 ug/kg;
- The ERL for the pesticide 4,4'-DDE (2.2 ug/kg) was exceeded in one borehole (B-001 from 0-10 feet) with a concentration of 4.2 ug/kg;

- The ERL for the pesticide 4,4'-DDT (1 ug/kg) was exceeded in four boreholes (B-001 from 0-10 feet, B-003 from 0-10 feet, B-028 from 0-10 feet and B-030 from 0-10 feet). Those ERL exceedances ranged from 2.5 ug/kg to 87 ug/kg. Note that the B-001 (0-10 feet) concentration of 87 ug/kg and B-030 (0-10 feet) concentration of 32 ug/kg also exceeded the ERM of 7 ug/kg;
- Similar to 4,4'-DDT, the ERL for total DDT (1.58 ug/kg) was exceeded in four boreholes (B-001 from 0-10 feet, B-003 from 0-10 feet, B-028 from 0-10 feet and B-030 from 0-10 feet) with a concentration range of 3.29 ug/kg to 99.0 ug/kg. In addition, the total DDT ERM (46.1 ug/kg) was exceeded at B-001 (0-10 feet) with a concentration of 99.0 ug/kg;
- The ERL for the pesticide dieldrin (0.02 ug/kg) was exceeded in only one borehole (B-023 from 0-10') with a concentration of 0.087 ug/kg; and
- Certain organic parameters were not detected, but their laboratory reporting limit was higher than the ERL, which occurred at least partially for 4,4'-DDD, 4,4'-DDE, chlordane, dieldrin, 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, and fluorene. However, none of the laboratory reporting limits exceeded the ERM. If the DB offerors wish to further pursue ocean disposal, then additional test methods/approaches may be considered.

In the standard elutriate and water samples (Table 4 and Table 5):

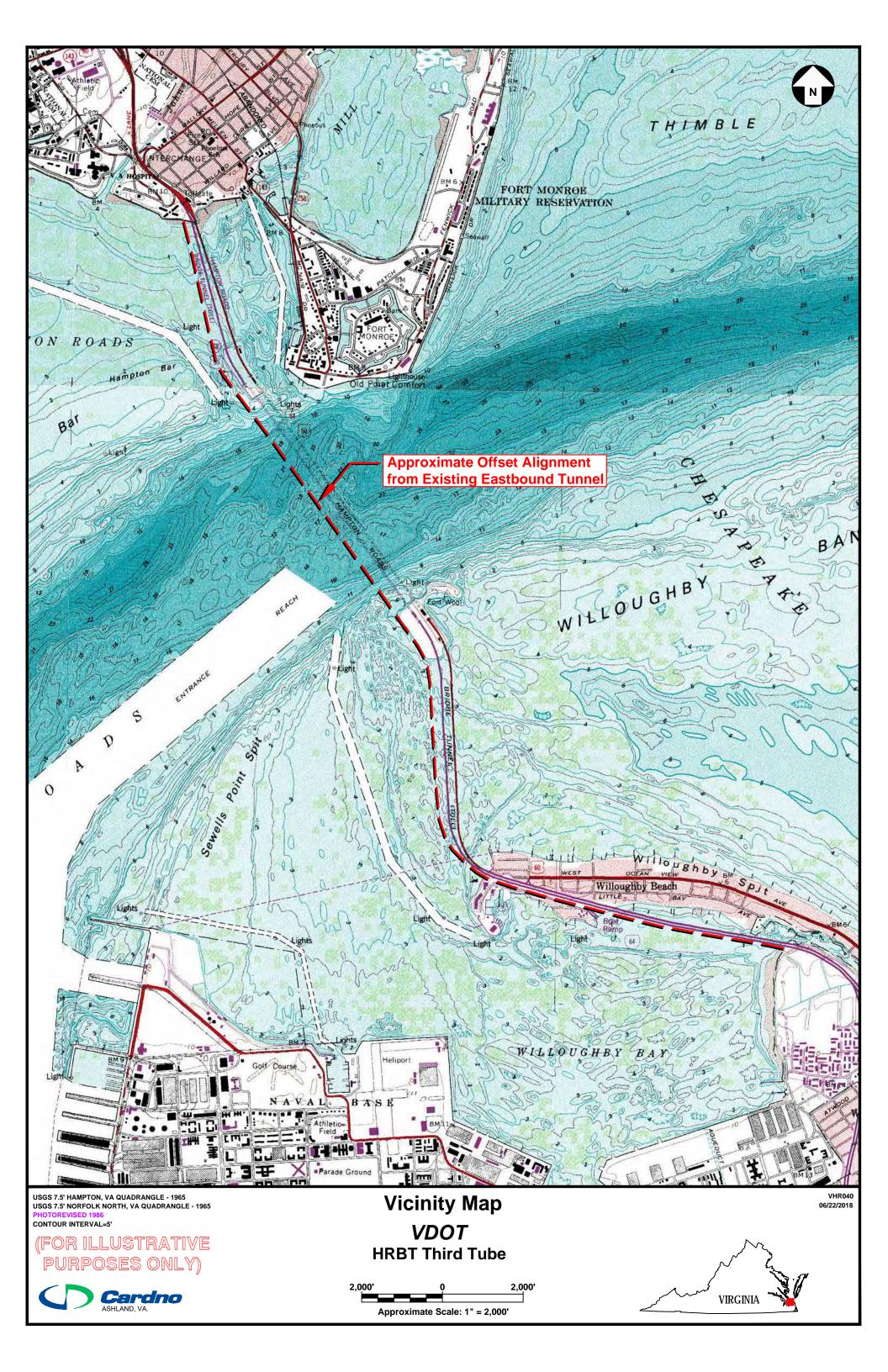
- > No chemical parameters for the elutriate and water samples contained a detection above a SQUIRT value.
- Certain organic parameters were not detected, but their laboratory reporting limit was higher than the SQUIRT value, which occurred for the SVOC pentachlorophenol and total cyanide. If the DB offerors wish to further pursue ocean disposal, then additional test methods/approaches may be considered.

In summary for an ocean disposal option, the ERL in sediment was exceeded in certain locations for three metals (arsenic, cadmium and nickel) and five pesticide constituents (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Total DDT and dieldrin). In the elutriate and surface water samples, the only confirmed exceedance of a SQUIRT value was one location (elutriate for B-033 0-10 feet) for one parameter (copper). However as previously mentioned, this preliminary study does not constitute full Section 103 characterization. Furthermore, the potential addition of other materials with the sediment such as drilling fluid additives may effect/restrict the disposal options such as ocean disposal.

5 Conclusions

For this preliminary study, sediment samples were collected from 12 locations distributed along the proposed HRBT Third Tube alignment. The information provided from this preliminary study is intended as a general screening of sediment conditions and not intended for use as a final/complete disposal determination. These screening-level results provide preliminary information for the DB offerors to consider in evaluating potential disposal and management options to prepare their proposals. Additionally, the following should be noted while reading this report.

- > The maps and figures provided in this report are for general illustration purposes only. For design details, the reader should review the project's website including the request for proposal documents;
- > For details of the geotechnical study such as borehole coordinates and borehole logs with sediment descriptions, the reader should review the geotechnical report; and
- Tables were prepared in this report as a visual aid summary; however, the reader should reference the laboratory certificates of analysis to review the full testing data. Note to pay close attention to the units reported on the laboratory certificates of analysis, which vary depending on the test.


The conclusions of this preliminary sediment study include the following:

- Potential management/disposal options for sediment/dredge spoils include upland disposal (such as in a permitted quarry/mining pit reclamation), landfill disposal at a permitted landfill and/or ocean disposal with Section 103 approval. This preliminary sediment study did not appear to rule out further consideration on these disposal options. The DB offeror may consider, but is not limited to, these options or others including a beneficial reuse such as shoreline nourishment or restoration;
- The DB offerors should consider determining any additional sediment sampling and testing needs associated with their design and construction means and methods including additional sample locations/depths/types, frequency, test methods and comparison/reference standards; and
- It should be noted that certain bridge tunnel installation/construction activities like BT drilling reportedly incorporate additives like polymers and slurry/grout material, and therefore could be part of the final spoils/material to be managed. This *Preliminary Sediment Study Report* could not predict various DB influenced project activities like potential additive mixtures or differing sediment processing/dewatering procedures and water management means and methods. Therefore, the offerors should take these construction and management processes into consideration for their proposal including the potential influence and restrictions should additives be used during construction.

Hampton Roads Bridge Tunnel Expansion Preliminary Sediment Study

APPENDIX

VICINITY MAP

Hampton Roads Bridge Tunnel Expansion Preliminary Sediment Study

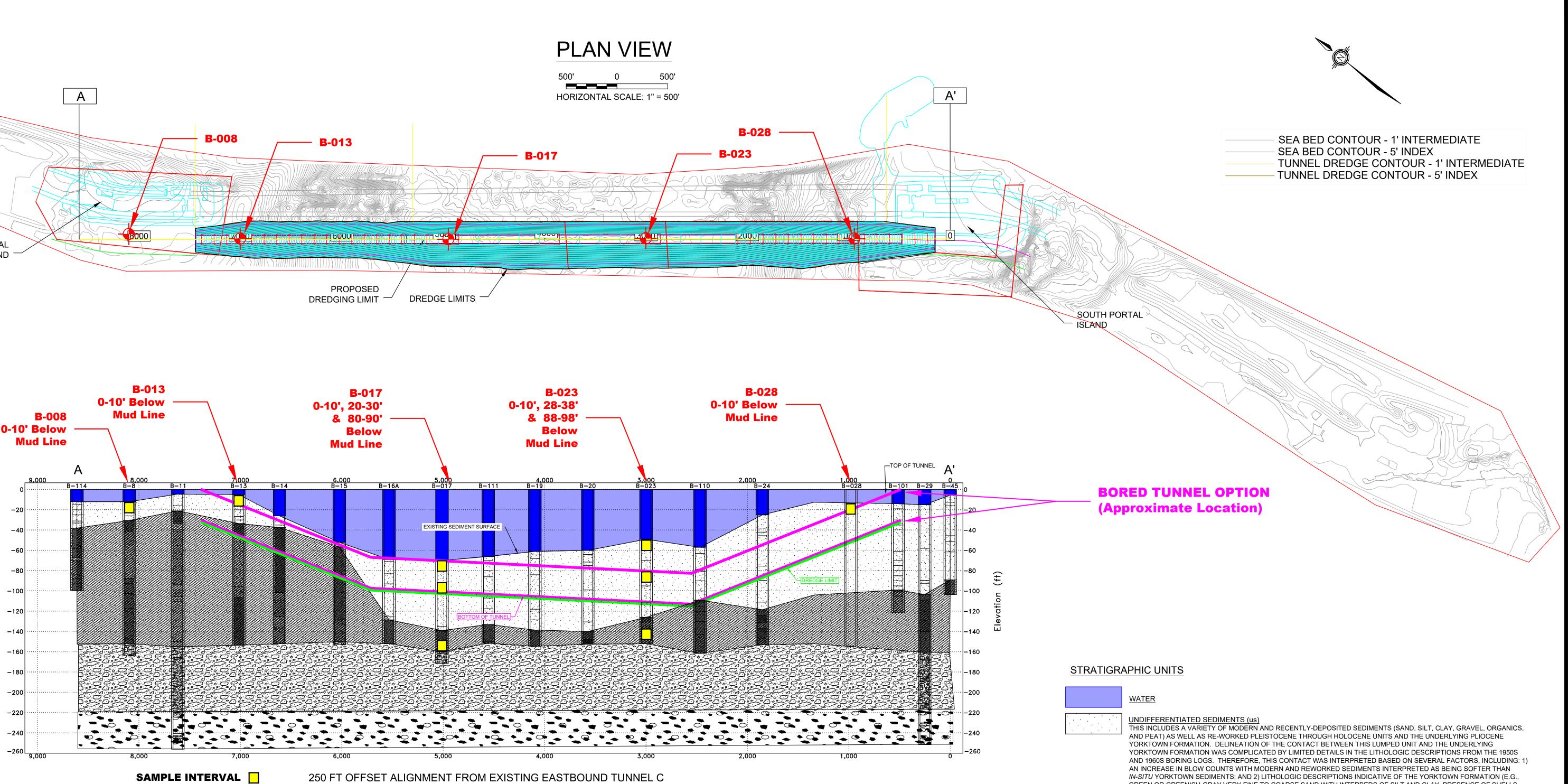
APPENDIX

SITE MAP

B001 - Borehole Location with Chemical Testing (FOR ILLUSTRATIVE PURPOSES ONLY)

VDOT

HRBT Third Tube

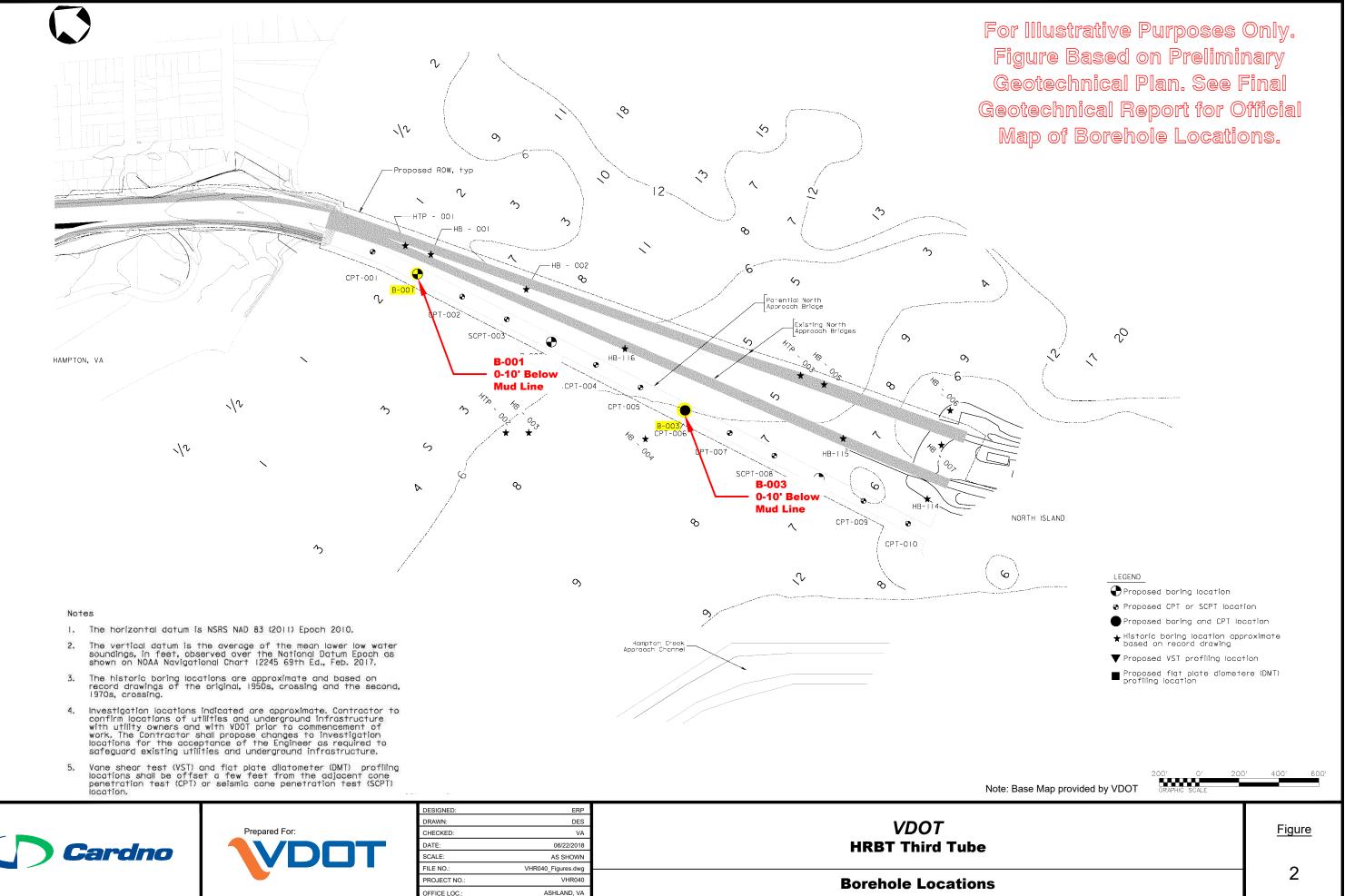

Hampton Roads Bridge Tunnel Expansion Preliminary Sediment Study

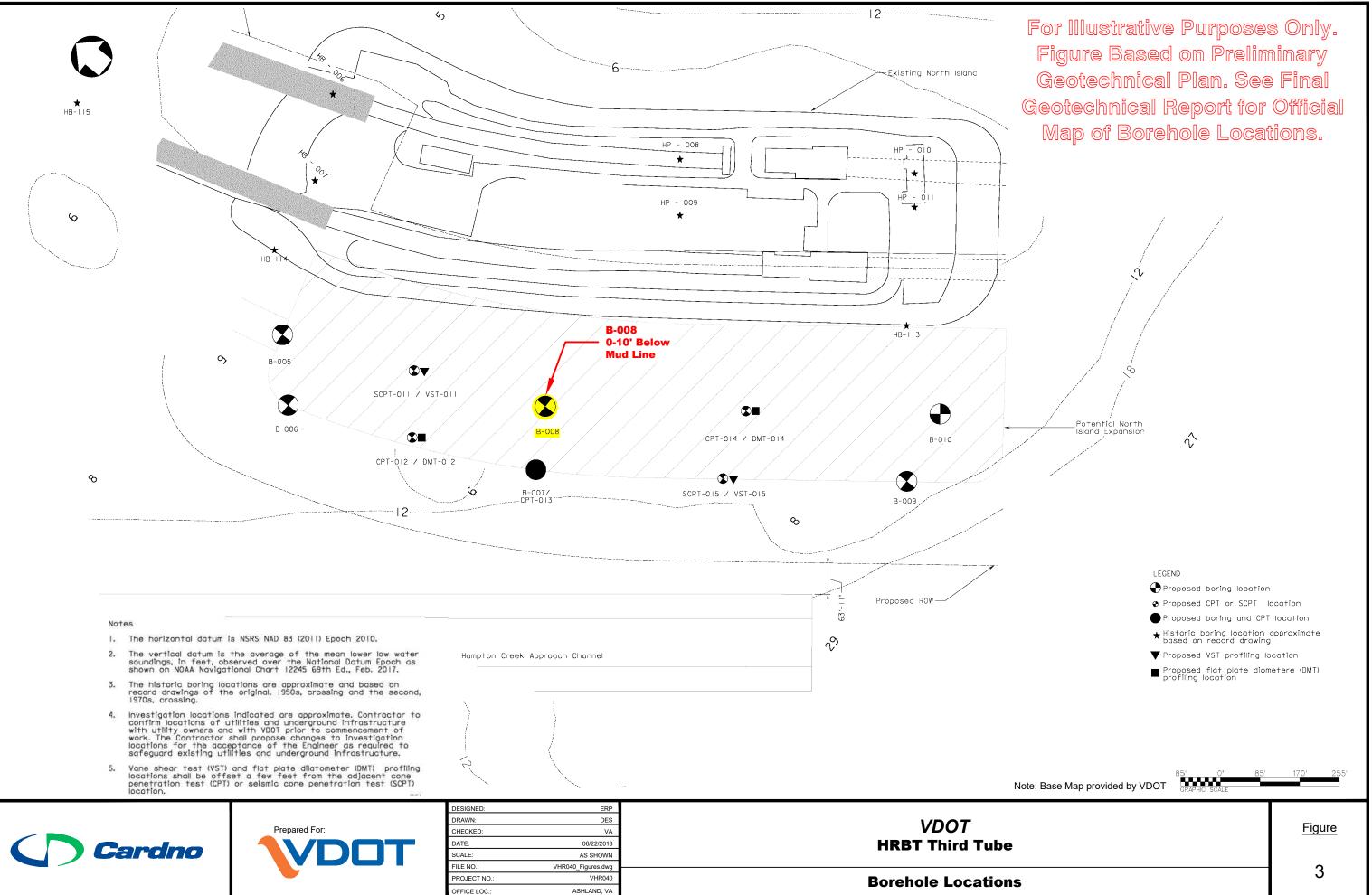
FIGURES 1 – 7

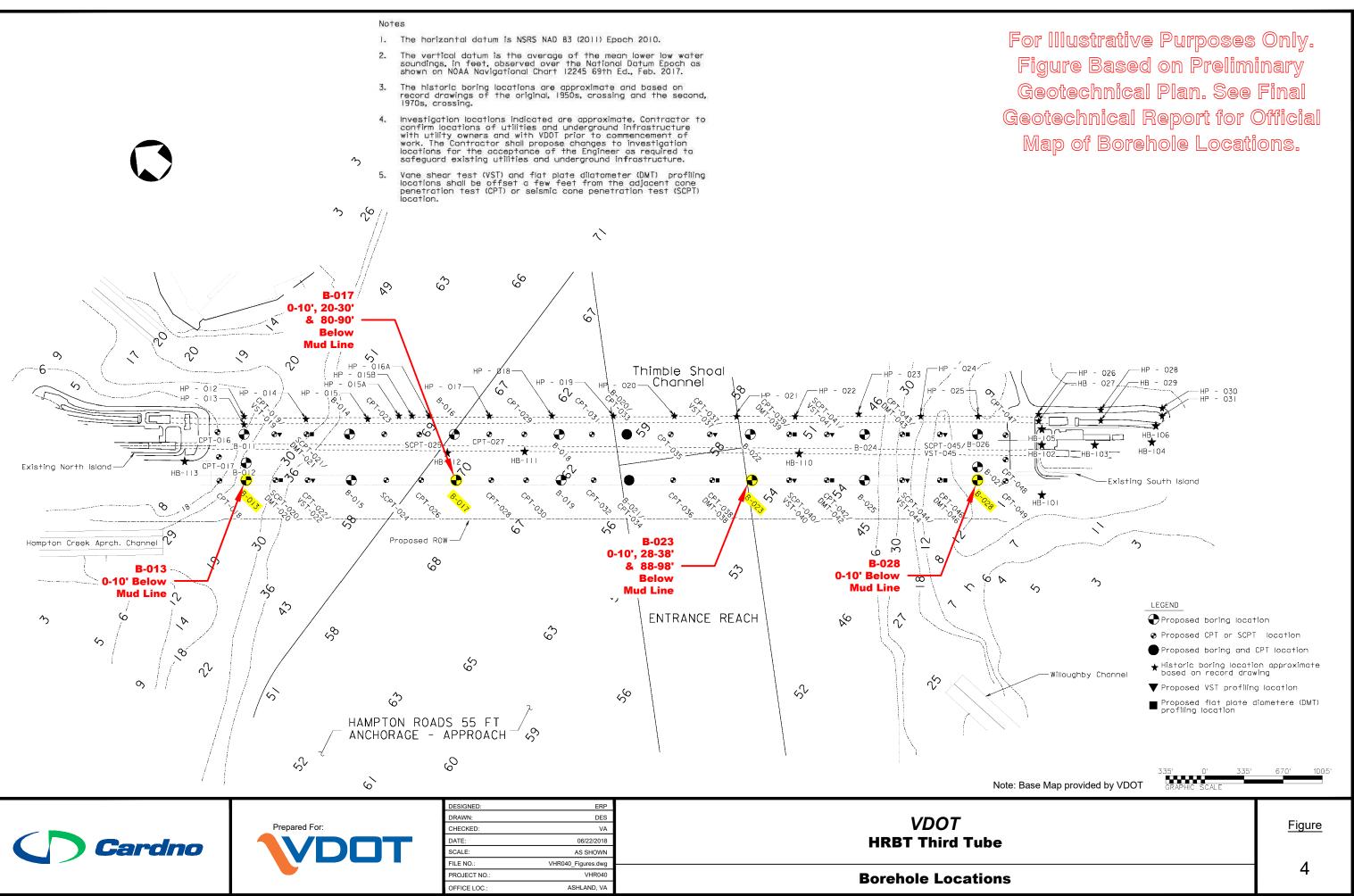
GEOLOGIC PROFILE

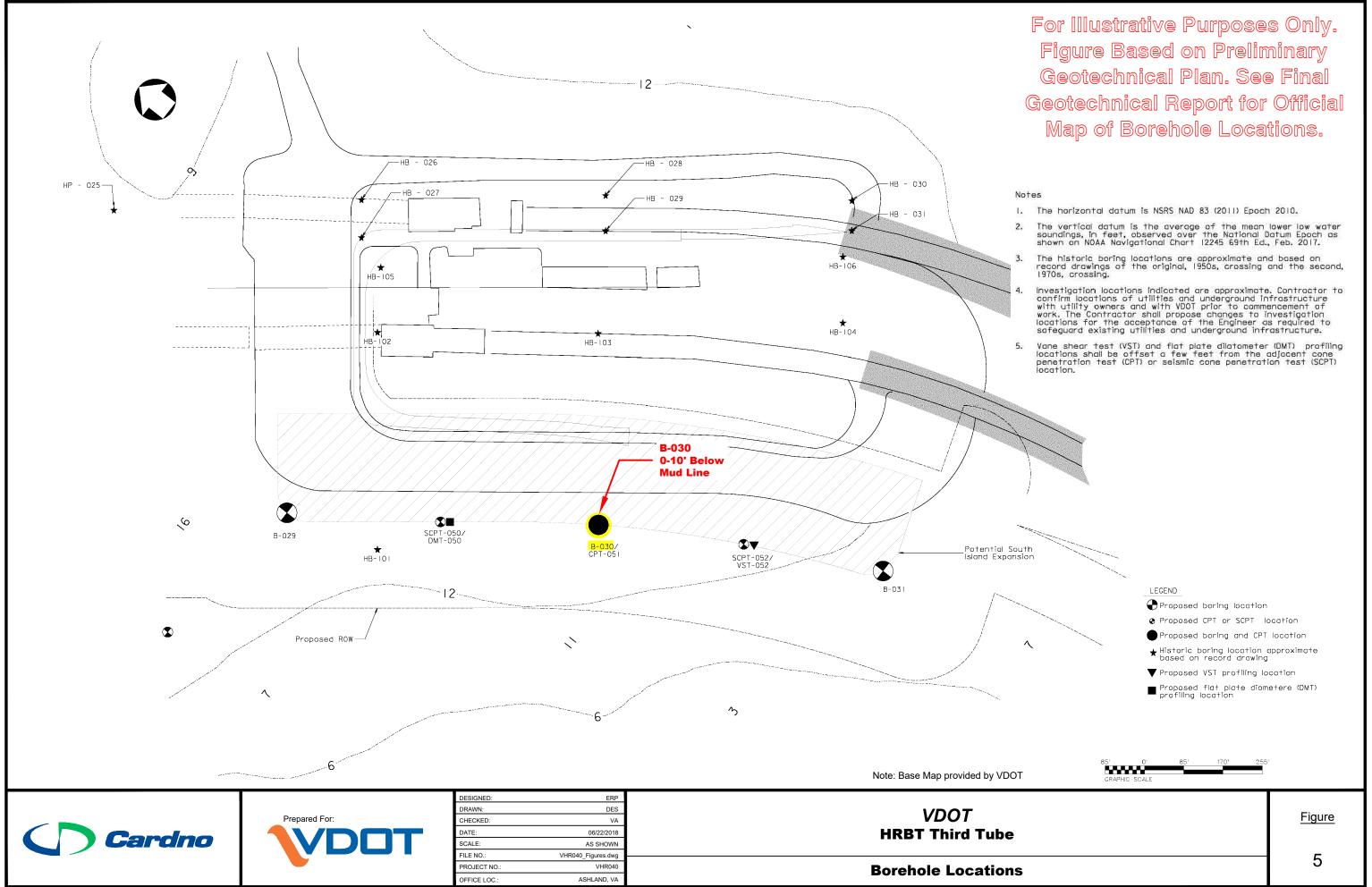
500'	0	500'			
HORIZON	ITAL SCALE	: 1" = 500'			
50'	0	50'			
VERTICAL SCALE: 1" = 50'					

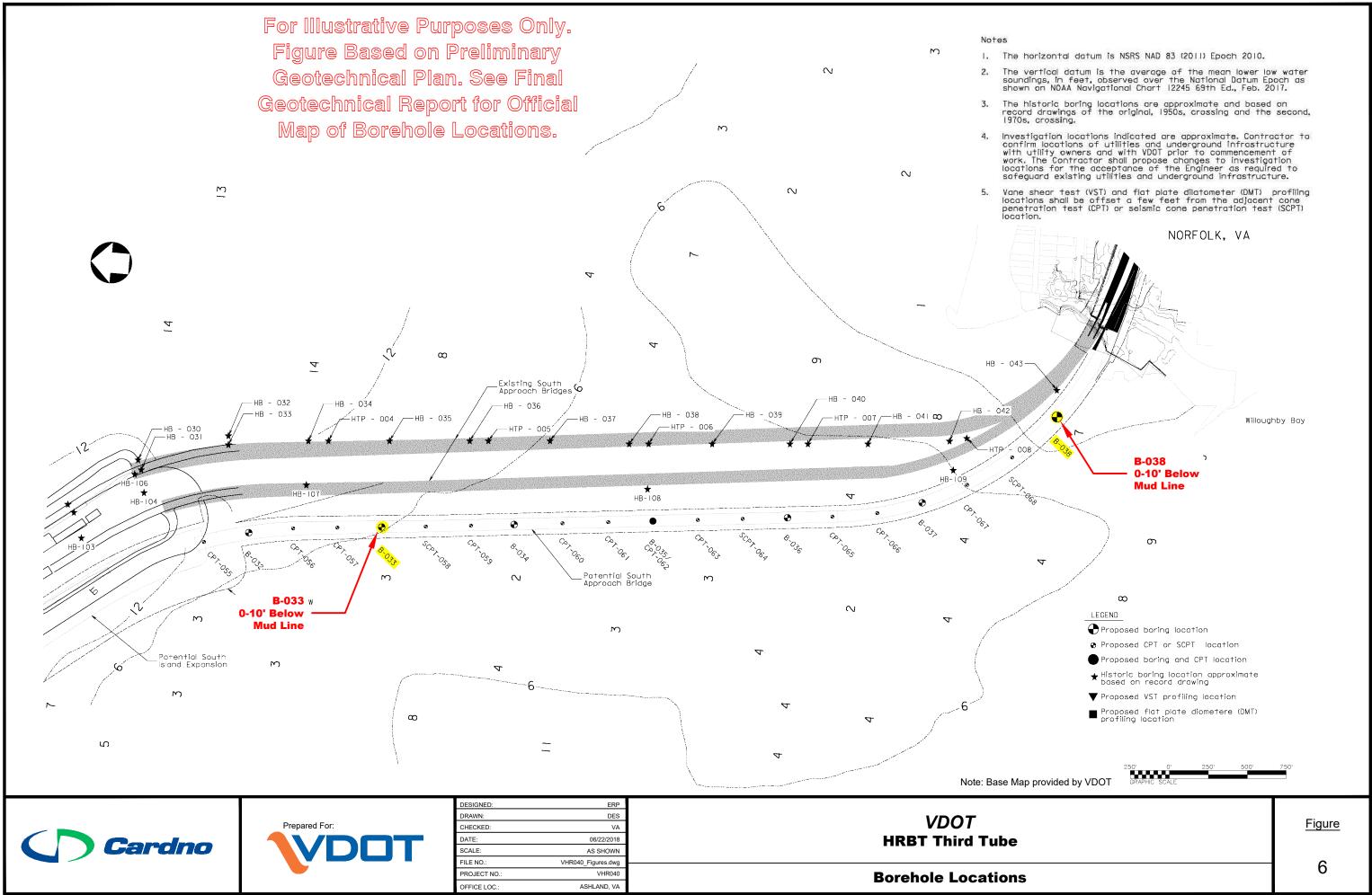
(FOR ILLUSTRATIVE PURPOSES ONLY)

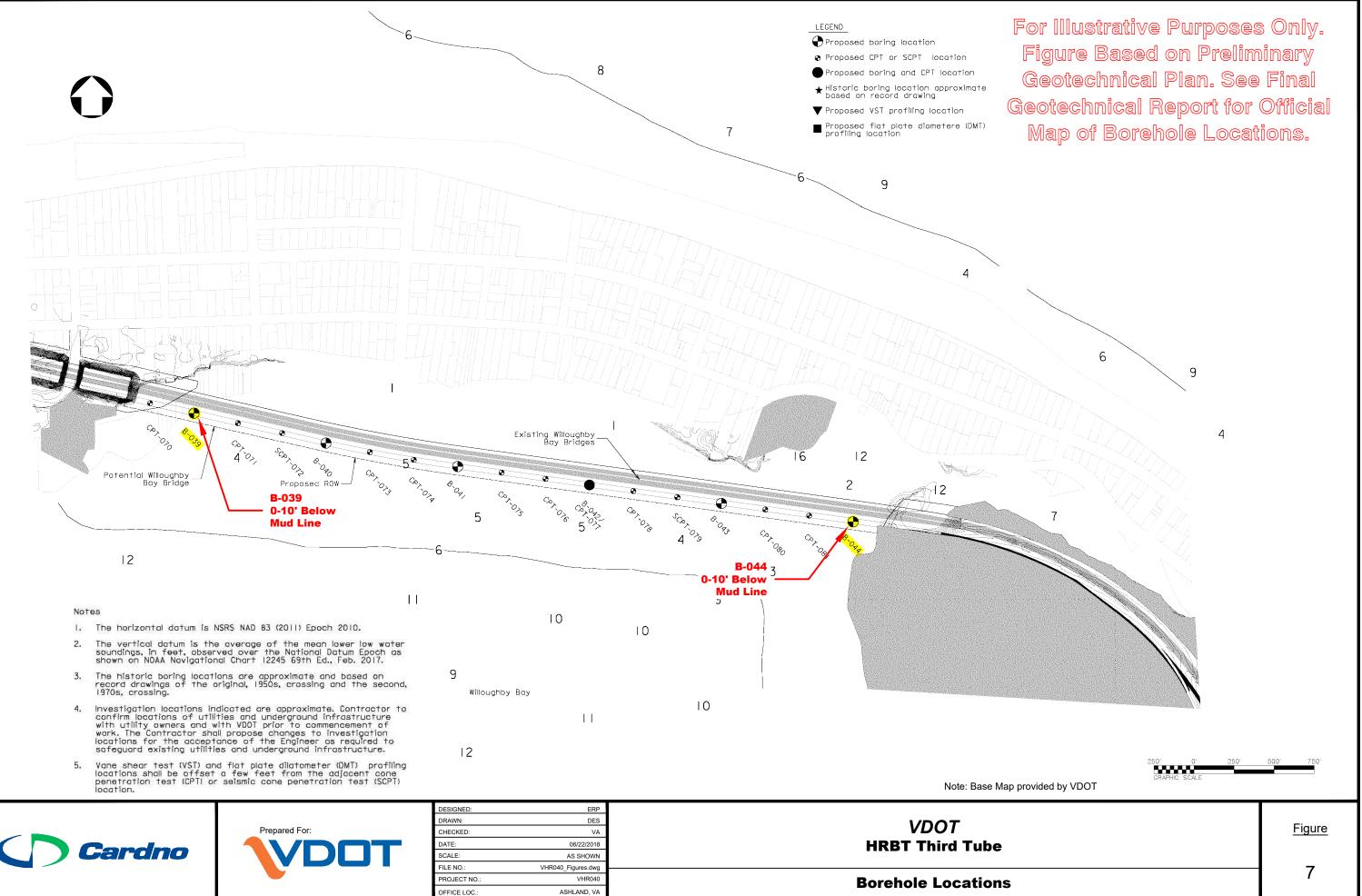

Cardno


VHR040_Figures.dv


AS SHOWN		
D: VA 06/22/18	HRBT Third Tube	<u>. iguio</u>
DES	VDOT	Figure
ERP		
	ADVANCED TO DEPTHS WHERE THIS UNIT WOULD BE ENCOUNTERED. <u>ST. MARYS FORMATION (Tm)</u> (UPPER AND MIDDLE MIOCENE). BLUISH- TO PINKISH-GRAY, MUDDY, VERY FINE SAND AND SANDY CLAY-SILT, LOC/ ABUNDANTLY SHELLY (MIXON <i>ET AL.</i> , 1989). A POSSIBLE CONTACT BETWEEN THIS UNIT AND THE OVERLYING EAST FORMATION WAS INTERPRETED BASED ON THE CBBT CROSS-SECTION (JACOBS, 2015) AS WELL AS CHANGES IN LITHOLOGIC DESCRIPTIONS BETWEEN APPROXIMATELY -210 AND -225 FEET ABOVE MEAN SEA LEVEL (AMSL) IN THI DEEPEST BORINGS, B-11 AND B-29.	ALLY TOVER
	EASTOVER FORMATION (Te) (UPPER MIOCENE): DARK-GRAY TO BLUISH-GRAY, MUDDY SAND, VERY FINE TO FINE, MICACEOUS, INTERBEDDED A SANDY SILT AND CLAY. LOWER PART OF UNIT IS DOMINANTLY MEDIUM- TO VERY THIN-BEDDED AND LAMINATED SI CLAY INTERBEDDED WITH VERY FINE SAND, LENTICULAR AND WAVY BEDDING COMMON; UPPER PART IS MAINLY V FINE TO FINE SAND CONTAINING ABUNDANT CLAY LAMINAE. FOSSILIFEROUS (MIXON <i>ET AL.</i> , 1989). THE CONTACT BETWEEN THE EASTOVER FORMATION AND THE OVERLYING YORKTOWN FORMATION WAS BASED ON CORRELATIO WITH THE CROSS-SECTION FOR THE CBBT (JACOBS, 2015) AS WELL AS LITHOLOGIC DESCRIPTIONS IN THE BORING INDICATING A CHANGE TO GRAY FROM GREENISH-GRAY AND FINER TEXTURE. MANY OF THE BORINGS WERE NOT	ILT AND ERY ON GLOGS
	<u>YORKTOWN FORMATION (Ty)</u> (LOWER UPPER AND LOWER PLIOCENE): BLUISH-GRAY AND GREENISH-GRAY SAND, FINE TO COARSE, IN PART GLAUCONITIC AND PHOSPHATIC, COMMONLY VERY SHELLY, INTERBEDDED WITH SANDY AND SILTY BLUE-GRAY CL LOWER YORK AND JAMES RIVER BASINS, UNIT INCLUDES CROSS-BEDDED SHELL HASH (MIXON <i>ET AL.</i> , 1989). THE F FOR DELINEATING THE CONTACT BETWEEN THIS UNIT AND THE OVERLYING UNDIFFERENTIATED SEDIMENTS IS DESCRIBED ABOVE.	
	• SHIRLEY FORMATION (MIDDLE PLEISTOCENE): LIGHT TO DARK-GRAY, BLUISH-GRAY AND BROWN SAND, GRAVEL, SILT, CLAY, AND PEAT. MARGINAL-MARINE FACIES IN LOWER JAMES RIVER IS SILTY FINE SAND AND SANDY SILT CONTAINING FOSSIL MOLLUSKS (MIXON <i>ET AL.</i> , 1989).	
	• TABB FORMATION (UPPER PLEISTOCENE): SAND, SILT, CLAY, AND PEAT (MIXON ET AL., 1989).	
	 CLUDE THE: ALLUVIUM (HOLOCENE AND PLEISTOCENE): FINE TO COARSE GRAVELLY SAND AND SANDY GRAVEL, SILT, AND CL LIGHT TO MEDIUM GRAY AND YELLOWISH-GRAY (MIXON <i>ET AL.</i>, 1989). 	AY,
AN YC AN AN GF AN	HIS INCLUDES A VARIETY OF MODERN AND RECENTLY-DEPOSITED SEDIMENTS (SAND, SILT, CLAY, GRAVEL, ORGANIC ND PEAT) AS WELL AS RE-WORKED PLEISTOCENE THROUGH HOLOCENE UNITS AND THE UNDERLYING PLIOCENE ORKTOWN FORMATION. DELINEATION OF THE CONTACT BETWEEN THIS LUMPED UNIT AND THE UNDERLYING ORKTOWN FORMATION WAS COMPLICATED BY LIMITED DETAILS IN THE LITHOLOGIC DESCRIPTIONS FROM THE 1950S ND 1960S BORING LOGS. THEREFORE, THIS CONTACT WAS INTERPRETED BASED ON SEVERAL FACTORS, INCLUDING N INCREASE IN BLOW COUNTS WITH MODERN AND REWORKED SEDIMENTS INTERPRETED AS BEING SOFTER THAN <i>-SITU</i> YORKTOWN SEDIMENTS; AND 2) LITHOLOGIC DESCRIPTIONS INDICATIVE OF THE YORKTOWN FORMATION (E.G. REEN OR GREENISH-GRAY VERY FINE TO COARSE SAND WITH INTERBEDS OF SILT AND CLAY, PRESENCE OF SHELLS ND LACK OF GRAVEL). RE-WORKED PLEISTOCENE THROUGH HOLOCENE UNITS ABOVE THE YORKTOWN FORMATION	; ;: 1)
	NDIFFERENTIATED SEDIMENTS (US)	·e
w	ATER	


Geologic Profile and Plan View




Boro		•
	Locations	•
		•

Hampton Roads Bridge Tunnel Expansion Preliminary Sediment Study

APPENDIX

AGRICULTURAL TEST RESULTS

COUNTY/STUDY: Saunders DATE: 4/24/2018

	Potential Peroxide Acidity	CCE/Sobek-NP	Saturated Paste			
Sample ID	Tons CaCO ₃ /1000 Tons Material	Tons CaCO3 Eq/1000tons material	рΗ	EC (mS/cm)	% Total S	HCL Fizz Test
B-001E	1.28	0.30	6.85	14.12	0.03	None
B-003E	0.00	8.08	7.41	22.70	0.14	Slight
B-028E	0.00	7.08	7.83	6.63	<0.01	Slight
B-030E	0.00	17.42	7.81	9.77	0.01	Moderate

COUNTY/STUDY: Saunders - HRBT DATE: 12/7/2017-12/20/17

	Potential Peroxide Acidity	CCE/Sobek-NP	Satu	rated Paste		
Sample ID	Tons CaCO ₃ /1000 Tons Material	Tons CaCO3 Eq/1000lbs material	рН	EC (dS/m)	% Total S	HCL Fizz Test
ENV-D1	0.00	82.11	7.39	38.90	1.16	Moderate
VDOT B-0008	1.23		7.84	16.49	0.07	None
VDOT B-033	0.00	11.47	7.93	0.02	0.05	Slight

Particle Size Analysis

Data ID#	171121
Lab #	ENV-D1
Series	ENVIVA
%VCS	3.0
%CS	2.9
%MS	6.7
%FS	14.8
%VFS	4.4
Total % Sand	31.7
%CSI	0.9
%MSI	13.5
%FSI	13.0
Total % Silt	27.4
Total % Clay	40.9
Textural Class	C

COUNTY/STUDY: Saunders - HRBT DATE: 1/26/2018

_	Potential Peroxide Acidity	CCE/Sobek-NP	Satura	Saturated Paste		
Sample ID	Tons CaCO ₃ /1000 Tons Material	Tons CaCO3 Eq/1000lbs material	рΗ	EC (dS/m)	% Total S	HCL Fizz Test
B-008	6.01	3.82	7.80	13.80	0.04	None
B-013	0.00	45.42	7.52	15.74	0.09	Slight
B-017	0.00	46.45	7.65	24.50	0.1	Slight
B-039	11.39	13.28	7.67	36.10	0.94	None
B-044	4.88	19.99	7.90	36.70	0.97	None

COUNTY/STUDY: Saunders DATE: 3/2/2018

	Potential Peroxide Acidity	CCE/Sobek-NP	Satur	ated Paste		
Sample ID	Tons CaCO ₃ /1000 Tons Material	Tons CaCO3 Eq/1000tons material	рΗ	EC (mS/cm)	% Total S	HCL Fizz Test
B-017, 20-30	1.12	11.00	7.56	27.20	0.42	None
B-017, 80-90	5.99	11.98	7.77	14.73	0.67	None

CARDNO C. Saunders: VDOT-HRBT Updated: 2/9/2018

Sample	Sample Depth (ft)									Sobek
Sample	Sample Depth (It)	NP	% S	MPA	NNP	NP/MPA	PPA	рН	EC (uS/m)	Fizz #
B-023	0-10	15.37	0.7	21.88	-6.51	0.70	4.38	7.99	36	None
B-023	28-38	8.33	0.41	12.81	-4.48	0.65	1.59	7.41	35	None
B-023	88-98	251.88	0	0.00	251.88	#DIV/0!	0.00	7.79	32	Moderate

TS= <0.01 no detection

COUNTY/STUDY: Saunders DATE: 3/14/2018

	Potential Peroxide Acidity	CCE/Sobek-NP	Saturated Paste			
Sample ID	Tons CaCO ₃ /1000 Tons Material	Tons CaCO3 Eq/1000tons material	рΗ	EC (mS/cm)	% Total S	HCL Fizz Test
B-038, 0-10	0.00	179.21	7.71	23.20	0.01	Strong
B-038, 0-10	0.00	176.77	7.66	23.70	0.01	Strong

ATTACHMENT L-7: BASELINE CHARACTERIZATION ENVIORNMENTAL SAMPLE ANALYTICAL RESULTS

Project	I-64 Hampton Roads Bridge-Tunnel
То	Hampton Roads Connector Partners (HRCP)
From	Mott MacDonald
Subject	Baseline Characterization Environmental Sample Analytical Results
Date	August 9, 2019
Attachments	Figure 1 – Sample Location Plan- South Island
	Tables 1 through 7 – Summary of Analytical Results

Baseline Characterization Environmental Sampling was conducted for the South Island Entrance portal portion of the I-64 Hampton Roads Bridge Tunnel (HRBT) Project on April 24 through May 13, 2019. Environmental sampling was conducted concurrent with Geotechnical investigation activities.

Soil, sediment, and water baseline characterization sampling was conducted in order to evaluate reuse and disposal options for materials anticipated to be encountered/excavated during construction activities relating to the HRBT Project. The reuse and disposal options being evaluated for the HRBT Project include the utilization of soils and sediment for tunnel construction (as ballast) and/or island expansion (inclusive of in-water placement), the disposal of excess soils and sediment at Port Tobacco at Weanack, Dominion Recycling and/or other upland disposal facilities, and the treatment and disposal of water generated during construction activities.

Sampling was conducted to obtain baseline characterization data from material that will be excavated or generated during construction activities at the South Island Entrance portal location. Additional sampling will most likely be required to fulfill regulatory and/or facility requirements prior to or during disposal activities. Hampton Roads Connector Partners (HRCP) will need to coordinate with the applicable regulatory agencies and disposal facilities to discuss the results of the baseline characterization environmental sampling, and to determine any additional sampling requirements.

1. SAMPLE COLLECTION ACTIVITIES

Eight (8) soil borings were installed within the South Island Entrance portal location via sonic drilling. The boring locations are depicted on Figure 1. As the top 25 feet of soils at the project site were imported as part of island development, one composite "fill" sample was collected from the 0-25 feet below site grade (bsg) interval of each soil boring. Each "fill" sample was analyzed for Standard Chemistry, Elutriate and Toxicity Characteristic Leaching Procedure (TCLP) analysis. A second composite sample was collected from the 25' to the end interval of each soil boring and analyzed for Standard Chemistry, Elutriate and TCLP analysis. Groundwater samples ENV-081-GW (30') and ENV-081-GW (127') were collected from soil boring location HRCP-L-ENV-081. Surface water samples HRCP-L-ENV-RW (4/30/19) and HRCP-L-ENV-RW (5/9/2019) were collected from the James River, in the vicinity of the project area, as surface water from the James River was utilized as elutriate preparation water. The soil boring sampling conducted April 24 through May 13, 2019 is depicted on the following table:

Boring ID	Depth (Feet bsg)	Sample	Analysis
	0-25	HRCP-L-ENV-024-Fill	Elutriate
HRCP-L-ENV-024	0-25	HRCP-L-ENV-024-Fill	Standard Chemistry, TCLP
HKGF-L-LINV-024	25-90	HRCP-L-ENV-024	Standard Chemistry, TCLP
	25-90	HRCP-L-ENV-024 Elutriate	Elutriate
	0-25	HRCP-L-ENV-025-Fill	Elutriate
HRCP-L-ENV-025	0-20	HRCP-L-ENV-025-Fill	Standard Chemistry, TCLP
HKCF-L-LINV-025	25-90	HRCP-L-ENV-025	Standard Chemistry, TCLP
	25-90	HRCP-L-ENV-025 Elutriate	Elutriate
	0-25	HRCP-L-ENV-026-Fill	Elutriate
HRCP-L-ENV-026	0-20	HRCP-L-ENV-026-Fill	Standard Chemistry, TCLP
	25-70	HRCP-L-ENV-026	Standard Chemistry, TCLP
	25-70	HRCP-L-ENV-026 Elutriate	Elutriate
	0-25	HRCP-L-ENV-027-Fill	Elutriate
	0-25	HRCP-L-ENV-027-Fill	Standard Chemistry, TCLP
HRCP-L-ENV-027	25-55	HRCP-L-ENV-027	Standard Chemistry, TCLP
		HRCP-L-ENV-027 Elutriate	Elutriate
	0-25	HRCP-L-ENV-082-Fill	Elutriate
HRCP-L-ENV-082		HRCP-L-ENV-082-Fill	Standard Chemistry, TCLP
HRUP-L-EINV-U82	25-200	HRCP-L-ENV-082	Standard Chemistry, TCLP
	25-200	HRCP-L-ENV-082 Elutriate	Elutriate
	0-25	HRCP-L-ENV-083-Fill	Elutriate
HRCP-L-ENV-083	0-20	HRCP-L-ENV-083-Fill	Standard Chemistry, TCLP
	25-60	HRCP-L-ENV-083	Standard Chemistry, TCLP
	25-00	HRCP-L-ENV-083 Elutriate	Elutriate
	0-25	HRCP-L-ENV-084-Fill	Elutriate
	0-25	HRCP-L-ENV-084-Fill	Standard Chemistry, TCLP
HRCP-L-ENV-084	25-45	HRCP-L-ENV-084	Standard Chemistry, TCLP
	20-40	HRCP-L-ENV-084 Elutriate	Elutriate
	0-25	HRCP-L-ENV-085-Fill	Elutriate
HRCP-L-ENV-085	0-20	HRCP-L-ENV-085-Fill	Standard Chemistry, TCLP
	25-45	HRCP-L-ENV-085	Standard Chemistry, TCLP
	20-40	HRCP-L-ENV-085 Elutriate	Elutriate

Samples were analyzed for the following parameters:

Parameters	Method	Media
Metals (ITM List)	SW846 6020	Soil, Water, Elutriate
Mercury	SW846 7471A	Soil, Water, Elutriate
Butyltins	Unger Method / Rice 1987	Soil, Water, Elutriate
PCB Congeners	SW846 8082	Soil, Water, Elutriate
PCB Aroclors	SW846 8082A	Soil, Water, Elutriate
Semi volatile Organic Compounds		Soil, Water, Elutriate
Polynuclear Aromatic Hydrocarbons	SW846 8270C	Soil, Water, Elutriate
(PAHs)		
Cyanide	SW846 9012A	Soil, Water, Elutriate
pH	EPA 9054D	Soil, Water, Elutriate
Nitrate/Nitrite	EPA 353.2	Soil, Water, Elutriate
Chlorinated Pesticides	SW846 8081A	Soil, Water, Elutriate
Herbicides	SW846 8151A	Soil, Water, Elutriate
Volatile Organic Compounds	SW846 8260C	Soil, Water, Elutriate
Dioxins/Furans (2,3,7,8-TCDD and	EPA 1613B	Soil, Water, Elutriate
2,3,7,8-TCDF only)		
Extractable Organic Halides (EOX)	SW846 9023	Soil
TPH - DRO/ORO (C10 to C34)	SW846 8015 D	Soil
TPH - GRO (C6 to C10)		Soil
Ammonia (as N)	EPA 350.1	Soil, Water, Elutriate
Total Kjedahl Nitrogen (TKN)	SM 4500 Norg_C	Soil, Water, Elutriate
Total Phosphorus	SM4500_P_E	Soil, Water, Elutriate
Sulfide	EPA 9030B/9034	Soil, Water, Elutriate
Potential Acidity	VA Tech method	Soil
Neutralization Potential	Neutralization Potential	Soil
Acid Base Accounting	Calculation	Soil
Calcium Carbonate Equivalence	AOAC 955.01	Soil
Pyritic Sulfur (Fizz Rating)	Calculation	Soil
Saturated Paste pH & Conductivity	Saturated paste extract	Soil
Flashpoint	7.1.2	Soil
Paint Filter Test	SW846 9095A	Soil (Fill Only)
Total Organic Carbon	Lloyd Kahn	Soil, Water, Elutriate
Total Solids	SM 2540G	Soil
Atterberg Limits	ASTM D4381	Soil
Specific Gravity	ASTM D854	Soil
Grain Size(Sieve and Hydrometer)	ASTM D422	Soil
TCLP Analysis (Includes Volatiles,		Soil
Semi volatiles,	SW846,8260B,8270C,8081A,8151A,	
Pesticides, Herbicides, Metals,	6010B, 7470A, 1311	
Mercury, and TCLP		

1.1. Screening Levels

Soil and sediment analytical data was compared to the marine sediment quality guidelines (specifically Threshold Effect Levels (TELs) and Probable Effect Levels (PELs) (MacDonald et al. 1996), the Estuarine NOAA-based Effects Range-Median (ER-M) Sediment Screening Values (Buchanan, M.F. 1999)), and the Project # HRBT I-64 Expansion Project Page **3 of 12** I-64 HRBT

Virginia Department of Environmental Quality's Groundwater Soil Screening Levels (GWSSL), Ecological Soil Screening Levels (ESSL), Residential Soil Screening Levels (RSSL) and Industrial Soil Screening Levels (ISSL) for the beneficial reuse of soils/sediments. The marine sediment quality guidelines determine concentration thresholds in which compounds may have negative ecological effects in a marine environment. Exceedances of the marine sediment quality guidelines indicate that the subject materials are not suitable for in-water placement. The Virginia Department of Environmental Quality's Soil Screening Levels dictate whether materials can be utilized for beneficial reuse. Sediment/soil exceeding the ESSL and GWSSL cannot be utilized for beneficial reuse within 200' of surface water, or within any ecologically sensitive environments. Sediment/soil exceeding the RSSL cannot be utilized for beneficial reuse at residential locations. If analytical data reveals petroleum hydrocarbons to be present in soil and sediment above 50 ppm, the subject soil and sediment may be required to be disposed of in a lined landfill.

Elutriate analytical data was compared to the Virginia Criteria for Surface Water (9VAC25-260-140). Elutriate analysis is designed to simulate the chemical compound concentrations of water in contact with the subject soil and sediment. Elutriate analytical results in exceedance of the Virginia Criteria for Surface Water would indicate that the in-water placement of the subject material would create conditions that exceed the Virginia Criteria for Surface Water.

TCLP analytical data was compared to the United States Environmental Protection Agency's (USEPA) Maximum Concentration of Contaminants for the Toxicity Characteristic criteria. TCLP analysis is designed to simulate leaching through a landfill. An exceedance of the USEPA's Maximum Concentration of Contaminants for the Toxicity Characteristic criteria would indicate that the subject material is classified as Hazardous Waste under the Resource Conservation and Recovery Act (RCRA), and is subject to the transportation and disposal requirements of RCRA.

Groundwater analytical data was compared to Virginia Criteria for Surface Water (9VAC25-260-140). An exceedance of the Virginia Criteria for Surface Water would indicate that water generated during dewatering operations in the location of the groundwater sample cannot be discharged to surface water without prior treatment.

Please note, jet grout residuals and jet grout decant water with pH levels greater than 12.5 are classified as Hazardous Waste under RCRA, and are therefore subject to special transportation and disposal requirements. High pH concentrations in jet grout residuals and jet grout decant water may alter the chemical characteristics of materials in contact with the subject jet grout residuals and jet grout decant water.

2. SAMPLE ANALYTICAL RESULTS

Analytical results from the sampling effort outlined within this memorandum are presented herein.

2.1. "Fill" Samples (0-25 feet bsg)

2.1.1. Standard Chemistry Results

Sample analytical results from the "fill" sediment samples revealed the following:

- Sediment Sample HRCP-L-ENV-024-Fill was found to exceed the Effects Range-Median (ERM) ecological screening level for calcium; the Residential Soil Screening Level (RSSL) for chromium; and the Groundwater Soil Screening Level (GWSSL) for cobalt, and iron.
- Sediment Sample HRCP-L-ENV-025-Fill was found to exceed the ERM ecological screening level for calcium; the RSSL for chromium; and the GWSSL for cobalt, and iron.
- Sediment Sample HRCP-L-ENV-026-Fill was found to exceed the ERM ecological screening level for calcium; the RSSL and Industrial Soil Screening Level (ISSL) for chromium; and the GWSSL for cobalt, and iron.
- Sediment Sample HRCP-L-ENV-027-Fill was found to exceed the ERM ecological screening level for calcium; the RSSL for chromium; and the GWSSL for cobalt, and iron.
- Sediment Sample HRCP-L-ENV-082-Fill was found to exceed the ERM ecological screening level for calcium; the RSSL for chromium; and was the GWSSL for cobalt and iron.
- Sediment Sample HRCP-L-ENV-083-Fill was found to exceed the ERM ecological screening level for calcium; the RSSL for chromium; and the GWSSL for cobalt and iron.
- Sediment Sample HRCP-L-ENV-084-Fill was found to exceed the ERM ecological screening level for calcium; the RSSL for chromium; and the GWSSL for cobalt, iron, and manganese.
- Sediment Sample HRCP-L-ENV-085-Fill was found to exceed the ERM ecological screening level for calcium; the RSSL for chromium; and the GWSSL for cobalt and iron.

2.1.2. Elutriate Results

Sample analytical results from the "fill" elutriate samples revealed the following:

• Elutriate Sample HRCP-L-ENV-024-Fill was found to exceed the Surface Water Criteria for iron; and the Weanack Clean Fill Criteria for manganese, and zinc.

- Elutriate Sample HRCP-L-ENV-025-Fill was found to exceed the Virginia Criteria for Surface Water for PCBs (specifically Congeners PCB 18, & PCB 184), copper, and iron; and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-026-Fill was found to exceed the Virginia Criteria for Surface Water for iron, manganese, and zinc.
- Elutriate Sample HRCP-L-ENV-027-Fill was found to exceed the Virginia Surface Water Criteria for iron; and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-082-Fill was found to exceed the Virginia Criteria for Surface Water for iron; and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-083-Fill was found to exceed the Virginia Criteria for Surface Water for iron; and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-084-Fill was found to exceed the Virginia Criteria for Surface Water for iron; and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-085-Fill was found to exceed the Virginia Criteria for Surface Water for PCBs (specifically Congener PCB 184), and iron; and the Weanack Clean Fill Criteria for manganese.

2.1.3. TCLP Results

No exceedances of the US Environmental Protection Agency's (USEPA) TCLP Criteria were detected in the "fill" sediment samples.

2.2. "Native" Samples (deeper than 25 feet bsg)

2.2.1 Standard Chemistry Results

Sample analytical results from the deep interval sediment samples revealed the following:

Sediment Sample HRCP-L-ENV-024 was found to exceed the ERM ecological screening level for calcium; the GWSSL, the ISSL, and the RSSL for arsenic; the Threshold Effect Level (TEL) ecological screening level and the Ecological Soil Screening Level (ESSL) for cadmium; the GWSSL, ISSL, and RSSL for chromium; the GWSSL and RSSL for cobalt; the GWSSL and RSSL for iron; the ESSL for magnesium; the GWSSL, the RSSL, and the ESSL for manganese; the TEL for nickel; the ESSL for Vanadium; the ESSL for zinc; and the ESSL and TEL for PCBs (specifically Congener PCB 8).

- Sediment sample HRCP-L-ENV-025 was found to exceed the RSSL for aluminum; the GWSSL, ISSL and RSSL for arsenic; the ERM for calcium; the GWSSL, ISSL, RSSL, and ESSL for chromium; the GWSSL and RSSL for cobalt; the GWSSL and RSSL for iron; the ESSL for magnesium; the RSSL and GWSSL for manganese; the ESSL for vanadium; and the ESSL for zinc.
- Sediment sample HRCP-L-ENV-026 was found to exceed the RSSL for arsenic; the TEL and ESSL for cadmium; the ERM for calcium; the GWSSL, ISSL and RSSL for chromium; the GWSSL and RSSL for cobalt; the GWSSL and RSSL for iron; the GWSSL and RSSL for manganese; the ESSL for vanadium; and the ESSL and TEL for PCBs (specifically Congeners PCB 101, PCB 118, PCB 138, PCB, 153, PCB 170, PCB 180, PCB 187, PCB 49, PCB 66, PCB 77, PCB 8, & PCB 206).
- Sediment sample HRCP-L-ENV-027 was found to exceed the GWSSL, ISSL and RSSL for arsenic; the TEL and ESSL for cadmium; the ERM for calcium; the ISSL and RSSL for chromium; the GWSSL and RSSL for cobalt; the GWSSL and RSSL for iron; the GWSSL for manganese; and the ESSL for vanadium.
- Sediment sample HRCP-L-ENV-082 was found to exceed the RSSL for arsenic; the TEL and ESSL for cadmium; the ERM for calcium; the GWSSL, the ISSL and the RSSL for chromium; the GWSSL and RSSL for cobalt; the GWSSL and RSSL for iron; the ESSL for magnesium; the GWSSL, RSSL and ESSL for manganese; and the ESSL for vanadium.
- Sediment sample HRCP-L-ENV-083 was found to exceed the RSSL for aluminum; the GWSSL and RSSL for arsenic; the TEL and ESSL for cadmium; the ISSL and RSSL for chromium; the GWSSL and RSSL for iron; the GWSSL for manganese; and the ESSL for vanadium.
- Sediment sample HRCP-L-ENV-084 was found to exceed the ERM for calcium; the ISSL and RSSL for chromium; the GWSSL for cobalt; the GWSSL for iron; and the GWSSL for manganese.
- Sediment sample HRCP-L-ENV-085 was found to exceed the RSSL for aluminum; the RSSL for arsenic; the ERM for cadmium, the ISSL and RSSL for chromium; the GWSSL and RSSL for cobalt; the GWSSL and RSSL for iron; the GWSSL and RSSL for manganese; and the ESSL for vanadium.

2.2.2 Elutriate Results

Sample analytical results from the deep interval elutriate samples revealed the following:

- Elutriate Sample HRCP-L-ENV-024 Elutriate was found to exceed the Virginia Criteria for Surface Water for copper, iron, and PCBs (specifically Congeners PCB 28 & PCB 66).
- Elutriate Sample HRCP-L-ENV-025 Elutriate was found to exceed the Virginia Criteria for Surface Water for iron and PCBs (specifically Congeners PCB 18 & PCB 66); and the Weanack Clean Fill

Criteria for manganese.

- Elutriate Sample HRCP-L-ENV-026 Elutriate was found to exceed the Virginia Criteria for Surface Water for copper, iron and PCBs (specifically Congener PCB 187); and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-027 Elutriate was found to exceed the Virginia Criteria for Surface Water for copper, iron and PCBs (specifically Congeners PCB 18, PCB 187, PCB 28, & PCB 44); and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-082 Elutriate was found to exceed the Virginia Criteria for Surface Water for copper, iron and PCBs (specifically Congeners PCB 156, PCB 18, PCB 183, &PCB 184); and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-083 Elutriate was found to the Virginia Criteria for Surface Water for copper, iron, heptachlor epoxide and PCBs (specifically Congeners PCB 18, & 66).
- Elutriate Sample HRCP-L-ENV-084 Elutriate was found to exceed the Virginia Criteria for Surface Water for copper, iron and PCBs (specifically Congeners PCB 18, PCB 187, PCB 28, & PCB 44); and the Weanack Clean Fill Criteria for manganese.
- Elutriate Sample HRCP-L-ENV-085 Elutriate was found to exceed Virginia Criteria for Surface Water for copper, and iron.

2.2.3 TCLP Results

No exceedances of the USEPA's TCLP Criteria were detected in the deep interval sediment samples.

2.3. Surface Water Samples

Surface water (James River) analytical results revealed samples HRCP-L-ENV-RW (4/30/19) to exceed the Virginia Criteria for Surface Water (9VAC25-260-140) for PCBs (specifically Congener PCB 18).

2.4. Groundwater Samples

Sample analytical results from groundwater sample ENV-081-GW (30') revealed concentrations of bromodichloromethane, copper, and zinc in exceedance of the Virginia Criteria for Surface Water (9VAC25-260-140), and concentrations of zinc in exceedance of the Virginia Ground Water Standards (9VAC25-280-40).

Sample analytical results from groundwater sample ENV-081-GW (127') revealed concentrations of arsenic, copper, endosulfan I, lead, nickel, dissolved nickel, zinc, and dissolved zinc in exceedance of the Virginia Criteria for Surface Water (9VAC25-260-140) and concentrations of cadmium and zinc in exceedance of the Virginia Ground Water Standards (9VAC25-280-40).

Sample Analytical Results are summarized in Tables 1 through 7, attached.

3. COMPARISON TO STANDARDS

3.1. Comparison to Requirements for In-Water Placement

Soil and sediment analytical data was compared to the marine sediment quality guidelines (specifically Threshold Effect Levels (TELs) and Probable Effect Levels (PELs) (MacDonald et al. 1996), the Estuarine NOAA-based Effects Range-Median (ER-M) Sediment Screening Values (Buchanan, M.F. 1999)), and the Virginia Department of Environmental Quality's GWSSL, ESSL, RSSL, and ISSL for the beneficial reuse of soils/sediments. Elutriate analytical data was compared to the Virginia Criteria for Surface Water (9VAC25-260-140).

PCBs were detected in exceedance of the TEL and ESSL in two (2) of the deep interval sediment samples (specifically samples HRCP-L-ENV-024 and HRCP-L-ENV-026). PCBs were detected in exceedance of the Virginia Criteria for Surface Water in seven (7) deep interval elutriate samples (specifically samples HRCP-L-ENV-024 through HRCP-L-ENV-084). PCBs were detected in exceedance of the Virginia Criteria for Surface Water in two (2) "fill" elutriate samples (specifically samples HRCP-L-ENV-025-FILL and HRCP-L-ENV-085-FILL).

Heptachlor Epoxide was detected in exceedance of the Virginia Criteria for Surface Water in one (1) deep interval elutriate sample (specifically sample HRCP-L-ENV-083). No potential sources of Heptachlor Epoxide were identified during sampling activities.

Aluminum, arsenic, calcium, chromium, cobalt, iron, magnesium, manganese, vanadium, and zinc were detected in exceedance of the ERM, TEL, and ESSL in all sixteen (16) sediment samples. Exceedances of the Virginia Criteria for Surface Water for these naturally occurring compounds were also detected in all sixteen (16) elutriate samples.

No other exceedances were identified in the samples other than those listed above.

Due to exceedances of the ESSL and TEL, the sediment represented by samples HRCP-L-ENV-024 and HRCP-L-ENV-026 cannot be utilized in water placement, or for beneficial reuse within 200' of surface water, or within any ecologically sensitive environments. Due to elutriate sample exceedances of the VA Criteria for Surface Water, the sediment represented by samples HRCP-L-ENV-024, HRCP-L-ENV-025, HRCP-L-ENV-026, HRCP-L-ENV-027, HRCP-L-ENV-082, HRCP-L-ENV-083, HRCP-L-ENV-084, HRCP-L-ENV-025, O25-FILL, and HRCP-L-ENV-085-FILL cannot be utilized for in water placement.

Samples HRCP-L-ENV-024-FILL, HRCP-L-ENV-026-FILL, HRCP-L-ENV-027-FILL, HRCP-L-ENV-082-FILL, HRCP-L-ENV-082-FILL, HRCP-L-ENV-083-FILL, and HRCP-L-ENV-084-FILL only contain exceedances of the applicable ecological and beneficial reuse standards for naturally occurring compounds. Approval from the applicable regulatory agencies will be required in order to utilize the sediment represented by these samples for in water placement.

3.2. Comparison to Requirements for Placement at Port Tobacco at Weanack

All soil and sediment samples were found to be in compliance with the Port Tobacco at Weanack Exclusion Criteria, pending the results of Acid-Base Accounting, and H2O2 Potential Acidity analysis.

Preliminary data from Acid-Base Accounting, and H2O2 Potential Acidity analysis indicate lime addition may be required to offset acidity in soils and sediment prior to placement at Port Tobacco at Weanack.

3.3. Comparison to Requirements for Other Upland Placement Options

3.3.1. TCLP Analysis

TCLP analysis analytical results revealed no exceedances of the USEPA's Maximum Concentration of Contaminants for the Toxicity Characteristic criteria in the soil and sediment samples. Therefore, the soils and sediment would not be considered hazardous by the USEPA, and, would not require management under the Virginia Hazardous Waste Management Code.

3.3.2. Soil Contaminated with Petroleum Products

Petroleum hydrocarbons were not detected in the soil and sediment samples. No evidence of petroleum impact was observed during the installation of soil borings. Therefore, the requirements outlined in the Commonwealth of Virginia's Soil Contaminated with Petroleum Products regulation (9VAC20-81-660) are not applicable.

3.3.3. Comparison with the Beneficial Reuse Soil Screening Levels

Sample analytical results were compared to the Virginia Department of Environmental Quality's GWSSL, ESSL, RSSL, and ISSL for the beneficial reuse of soils in order to determine if materials can be utilized for beneficial reuse at upland locations. Sediment/soil exceeding the ESSL and GWSSL cannot be utilized for beneficial reuse within 200' of surface water, or within any ecologically sensitive environments. Sediment/soil exceeding the RSSL cannot be utilized for beneficial reuse at residential locations. Sediment/soil exceeding the RSSL cannot be utilized for beneficial reuse at residential locations. Sediment/soil exceeding the ISSL cannot be utilized for beneficial reuse at residential locations.

PCBs were detected in exceedance of the ESSL in two (2) of the deep interval sediment samples (specifically samples HRCP-L-ENV-024 and HRCP-L-ENV-026). Material represented by sample HRCP-L-ENV-024 and sample HRCP-L-ENV-026 cannot be utilized for beneficial reuse within 200' of surface water, or within any ecologically sensitive environments.

Aluminum, arsenic, calcium, chromium, cobalt, iron, magnesium, manganese, vanadium, and zinc were detected in exceedance of the RSSLs, and the GWSSLs in all sixteen (16) sediment samples; and in exceedances of the ISSLs in nine (9) of the sixteen (16) sediment sample (Specifically samples HRCP-L-ENV-026-Fill, HRCP-L-ENV-024 through HRCP-L-ENV-027, and HRCP-L-ENV-083 through HRCP-L-ENV-085). Therefore, soil/sediment represented by all sixteen samples cannot be utilized for beneficial reuse within 200' of surface water, or within any ecologically sensitive environments, or at residential locations. Soil/sediment represented by samples HRCP-L-ENV-026-Fill, HRCP-L-ENV-024 through HRCP-L-ENV-026-Fill, HRCP-L-ENV-024 through HRCP-L-ENV-026-Fill, HRCP-L-ENV-024 through HRCP-L-ENV-026-Fill, HRCP-L-ENV-024 through HRCP-L-ENV-027, and HRCP-L-ENV-028 through HRCP-L-ENV-085 cannot be utilized for beneficial reuse at industrial locations.

3.4. Comparison to Groundwater Disposal Criteria

Groundwater analytical results revelated bromodichloromethane in exceedance of the human health based Public Water Supply standard in sample ENV-081-GW (30'). As the project area is not located within a Public Water Supply, this standard is not applicable. Endosulfan I was detected in exceedance of the acute and chronic ecological standards in sample ENV-081-GW (127'). Water generated from the sample location during construction activities will be required to be evaluated, and if necessary, treated to address potential Endosulfan contamination. No potential sources of Endosulfan I contamination were identified during sampling activities.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1. PCBs

The presence of PCBs in excess of the surface water threshold and the ESSL in 7 of the 8 samples collected from material at depth (greater than 25 feet below grade), which precludes use of this material as fill for in-water placement for the North Island Expansion or within 200' of ecological receptors. Further, geotechnical properties of the material at depth may not be suitable for reuse for island expansion due to its high clay content.

PCBs were detected in 2 of the 8 samples obtained from the fill material (surface to 25 feet below grade) at concentrations in excess of the surface water threshold. A more detailed sampling effort could delineate and segregate materials in excess of the surface water threshold. Delineation efforts, if successful, may result in the reuse of up to 80,000 cubic yards of material for in-water placement.

4.1.1. Potential PCB impacts to Elutriate Preparation Water

The James River surface water sample HRCP-L-ENV-RW (4/30/2019) was found to exceed the Virginia Criteria for Surface Water for PCBs (specifically Congener PCB 18). James River water was used as elutriate preparation water in all elutriate samples. As none of the elutriate sample PCB exceedances were solely for PCB Congener 18, it is unlikely that the PCB concentrations detected in the elutriate samples are solely from contaminated elutriate preparation water. The PCB contamination detected in the sediment, elutriate, and surface water samples is likely due to persistent diffuse contamination and the historic industrial nature of the area, and not a point source discharge.

4.2. Chromium

Total chromium was detected in excess of the industrial and residential soil screening criteria, indicating that the sediments/soils cannot be utilized on industrial and residential use properties. Sediments/soils were additionally analyzed for hexavalent chromium, as prior results from the area indicated levels of total chromium in excess of the numerical value utilized as a trigger for the evaluation of hexavalent chromium. Hexavalent chromium was not detected in any samples. However, it should be noted that the high pH of the jet grouting process may alter the chemical composition of total or trivalent chromium, which could result in the presence of hexavalent chromium. The potential presence of hexavalent chromium should be further evaluated through the TBM bench-scale testing. If hexavalent chromium is present in filtrate water, additional treatment will be required prior to discharge to the

river. An ion exchange unit and associated exchange media could be required as part of the treatment plant process.

4.3. Metals

Aluminum, arsenic, calcium, cobalt, iron, magnesium, manganese, vanadium and zinc were detected in all 16 samples collected (fill material and material at depth) in excess of the ERM, TEL, ESSL and Virginia Surface Water Criteria. Excess of these standards would not allow any material excavated to be reused for in-water placement for island expansion or placed within 200' of ecological receptors. It is recommended to discuss the applicability of these standards with the appropriate regulatory agencies as these nine metals are naturally occurring.

4.4. Groundwater

Groundwater was collected at a shallow and deep interval to identify any parameters that may require special treatment in the STP/WTP plant. Analytical results indicated elevated concentrations of metals and Endosulfan I (pesticide) in excess of the Virginia Surface Water Criteria. Design of the treatment plant should include elements that will address these compounds prior to discharging water back into the River.

4.5. Disposal

Analytical results generated to date indicate that material excavated as part of the portal entry and tricell construction would not be acceptable for in-water placement or placement within 200' of ecological receptors without agency consultation.

Preliminary data from Acid-Base Accounting, and H2O2 Potential Acidity analysis indicate lime addition may be required to offset acidity in soils and sediment prior to placement at Port Tobacco at Weanack. Port Tobacco at Weanack will establish a sampling protocol to test materials prior to disposal at the Site in order to identify if lime is needed and at what quantity.

Petroleum hydrocarbons were not detected in the soil and sediment samples, and no evidence of petroleum impacts were observed during the installation of soil borings. Further, analytical results for other classes of compounds indicate the material is not hazardous and is not anticipated to be required to be disposed of at a lined landfill.