The Project Overview
Settlers Landing in Hampton to I-564 in Norfolk (10 miles)

I-64 improvements include 6 lanes of highway and construction of 8 lane bridge/tunnel

Two (2) new bored tunnels will serve Eastbound traffic

Two (2) existing HRBT tunnels will serve Westbound traffic
The Project Overview

- Tunnel crossing
 - ~ 8000 ft. across Hampton Roads Channel
- Island improvements
- Marine bridges
 - ~ 9000 ft. across Hampton Roads waterway
 - ~ 5000 ft. across Willoughby Bay
- Landside highway widening
 - ~ 1 mile in Hampton
 - ~ 4 miles in Norfolk
The Path to Award
Design-Build (DB) and Design-Build-Finance-Operate-Maintain (DBFOM) methods evaluated

The “Public Sector Analysis and Competition” report identified the DB option as providing better value to the Commonwealth:
- Under DB, project will be supported fully by public funds, with no private financing
- Under DBFOM, the projected revenue generation of the facility is insufficient for value-creating transfer of revenue risk to the private sector

Code of Virginia § 33.2-119. Limitation on tolling.
- “…no toll may be imposed or collected on un-tolled lanes or components of a highway, bridge, or tunnel without approval from the General Assembly…”

Toll revenue forecasts support less than 10% of construction costs
- Under DBFOM, public contribution would still be needed to cover more than 90% of project construction costs
Preserves the option to operate the facility as part of a potential future Regional Express Lane Network

Preserves the flexibility to bundle O&M of project with O&M of a potential future Regional Express Lane Network

VDOT Design-Build program documents/procedures not suitable for this project

PPTA could increase competition and deliver better value to the Commonwealth:
- Provides contractual flexibility for complex risk profiles
- Includes iterative process that invites feedback and collaboration from the proposers

Public sector risk allocation
- Continued responsibility for routine O&M,
- Lifecycle management and revenue risks/rewards retained by public sector

Private sector risk allocation
- Optimal risk transfer of design and construction risks
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPTA Steering Committee</td>
<td>Dec 12, 2017</td>
</tr>
<tr>
<td>Request for Qualifications (RFQ) Issuance</td>
<td>Dec 15, 2017</td>
</tr>
<tr>
<td>Shortlist Announcement</td>
<td>Apr 26, 2018</td>
</tr>
<tr>
<td>PPTA Steering Committee</td>
<td>May 9, 2018</td>
</tr>
<tr>
<td>Draft request for Proposals (RFP) Release</td>
<td>May 22, 2018</td>
</tr>
<tr>
<td>Proprietary/ATC Meetings (6 rounds)</td>
<td>Jun-Oct, 2018</td>
</tr>
<tr>
<td>Final RFP Release</td>
<td>Sept 27, 2018</td>
</tr>
<tr>
<td>Addenda 1 to Final RFP</td>
<td>Nov 28, 2018</td>
</tr>
<tr>
<td>Addenda 2 to Final RFP</td>
<td>Dec 14, 2018</td>
</tr>
<tr>
<td>Addenda 3 to Final RFP</td>
<td>Dec 19, 2018</td>
</tr>
<tr>
<td>Technical Proposal Submission</td>
<td>Jan 15, 2019</td>
</tr>
<tr>
<td>Technical Proposal Evaluation</td>
<td>Feb 5, 2019</td>
</tr>
<tr>
<td>Price Proposal Submission</td>
<td>Feb 8, 2019</td>
</tr>
<tr>
<td>Price Proposal Evaluation</td>
<td>Feb 11, 2019</td>
</tr>
<tr>
<td>Project Award</td>
<td>April 3, 2019</td>
</tr>
</tbody>
</table>

- Design-Build, Best Value Procurement
 Two proposals were received

- Both technical proposals responsive

- The determination of the Best Value Proposal was based on the following formula:

 \[
 \text{Technical Proposal Score (max. 40 points)} + \text{Price Proposal Score (max. 60 points)} = \text{Total Proposal Score (max. 100 points)}
 \]

- Highest Technical and Financial Score

- Successful Proposer: Hampton Roads Connector Partners

- DB Contract Value: $3.29B
The Successful Team

A World-Class Team
Sources of Funds

<table>
<thead>
<tr>
<th>AVAILABLE FUNDS</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRTAC (Debt & Cash)</td>
<td>$3,208,469,581</td>
</tr>
<tr>
<td>Toll-Backed Bond Proceeds</td>
<td>$345,000,000</td>
</tr>
<tr>
<td>SMART SCALE</td>
<td>$200,000,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$3,753,469,581</td>
</tr>
<tr>
<td>VDOT – Bridge & SGR (South Island Trestle Bridge)</td>
<td>$108,527,646</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$3,861,997,227</td>
</tr>
</tbody>
</table>
The Design-Build Timeline
The Design-Build Timeline

- **Contract Execution + LNTP1**
 - 04/15/19

- **LNTP2 + LNTP3**
 - 9 months after LNTP1
 - 1/2020

- Anticipated JPA Approval Date
 - LNTP1 = NTP
 - 540 days (18 months) after LNTP1
 - October 2020

- **Substantial Completion**
 - 06/30/25

- **Contractual - Substantial Completion Deadline**
 - 09/01/25

- **Contractual - Final Completion Deadline**
 - 11/01/25

- **Permanent Works over 55 months**
- Launch & Receiving pit ready for TBM
- TBM Assembly and Mining
- Commissioning and Testing North & South Marine Trestles
- Land Works I-64 Widening

- **Design and Investigation Works for Environmental Permitting**
- 6 MONTH OF SCOPE VALIDATION
- **LNTP 2**
- LNTP2: Authorization for TBM Procurement

- **LNTP 3**
- LNTP3: Launching Pit Construction to start

- **LNTP 1**
- 2019 2020 2021 2022 2023 2024 2025
Project Unique Features
The South Island
Bored Tunnel
Variable Density Tunnel Boring Machine (TBM)

SHIELD: Waterproof space of work to erect the rings of the tunnel

TBM CUTTERHEAD: rotate to dig and excavate the ground

GANTRY: Power Supply and Muck excavation through slurry

RING ERECTION: Thrust Rams retract to install segments one by one
EXIT SHAFT :
TBM through headwall at the exit

U-TURN :
Rotation of TBM on the North Island to bore the second tube
Traffic Management

- **Active Transportation Management System (ATMS)**
 - Lane Use Signals (LUS) over all lanes and shoulders
 - Gantries every ½ mile along the corridor
 - Dynamic message signs, vehicle detection, variable speed limit signs, CCTV
 - Corridor Management for incidents and congestion

- **Tunnel Supervisory Control and Data Acquisition (SCADA) Systems, new and existing tunnels**
 - Management: Overheight Detection, Dangerous Cargo Switches, Traffic Stoppages
 - Power: Switchgear, Motor Control Centers, UPS, Generators, Transfer Switches
 - Ventilation: Jet Fans, Air Quality, Pressurization
 - Fire Detection: Smoke Detectors, Linear Heat Detectors
 - Fire Suppression: Deluge Fire Suppression Systems
 - New Primary and Secondary Tunnel Control Rooms
 - Pumps: Drainage, Fire Protection

- Reconfiguration of existing EB Tunnel to support WB traffic

- Capacity in all roadside cabinets for future connected vehicle technology
Thank you